"감마함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “<br><math>” 문자열을 “:<math>” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[감마함수]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
65번째 줄: 57번째 줄:
 
(증명)
 
(증명)
  
[[삼각함수의 무한곱 표현|삼각함수와 무한곱 표현]]
+
[[삼각함수의 무한곱 표현]]
 
+
:<math>\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)</math> 과 :<math>\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}</math> 를 써서 증명된다. ■
<math>\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)</math> 과 :<math>\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}</math> 를 써서 증명된다. ■
 
  
 
* 다음 계산을 얻는다  
 
* 다음 계산을 얻는다  
86번째 줄: 77번째 줄:
 
==곱셈공식==
 
==곱셈공식==
  
*  이항:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!</math>:<math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math><br>
+
*  이항
 +
:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!</math>:<math>2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)</math><br>
 
*  일반화:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)</math><br>
 
*  일반화:<math>\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)</math><br>
  
112번째 줄: 104번째 줄:
 
==쿰머의 푸리에 급수==
 
==쿰머의 푸리에 급수==
  
* [[로그감마 함수]]의 푸리에 급수:<math>\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber  \end{eqnarray} </math><br>
+
* [[로그감마 함수]]의 푸리에 급수
 +
:<math>\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber  \end{eqnarray} </math><br>
  
 
 
 
 
200번째 줄: 193번째 줄:
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZmM5YWZjMzAtZmVjNS00OWUxLWJhZGUtMzMwN2Q4YmI5ZTIz&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxZmM5YWZjMzAtZmVjNS00OWUxLWJhZGUtMzMwN2Q4YmI5ZTIz&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
 
 
* http://functions.wolfram.com/
 
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
 
* [[매스매티카 파일 목록]]
 
  
 
 
 
 
212번째 줄: 200번째 줄:
 
==사전형태의 자료==
 
==사전형태의 자료==
  
* [http://ko.wikipedia.org/wiki/%EA%B0%90%EB%A7%88%ED%95%A8%EC%88%98 http://ko.wikipedia.org/wiki/감마함수]
+
* http://ko.wikipedia.org/wiki/감마함수
 
* http://en.wikipedia.org/wiki/gamma_function
 
* http://en.wikipedia.org/wiki/gamma_function
* [http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function ]http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function
+
* http://en.wikipedia.org/wiki/Particular_values_of_the_Gamma_function
* [http://en.wikipedia.org/wiki/Bohr%E2%80%93Mollerup_theorem http://en.wikipedia.org/wiki/Bohr–Mollerup_theorem]
+
* http://en.wikipedia.org/wiki/Bohr–Mollerup_theorem
 
* http://mathworld.wolfram.com/BinetsLogGammaFormulas.html
 
* http://mathworld.wolfram.com/BinetsLogGammaFormulas.html
  
224번째 줄: 212번째 줄:
 
==관련도서==
 
==관련도서==
  
* The Gamma Function<br>
+
* Emil Artin, The Gamma Function
** Emil Artin
 
  
 
 
 
 
239번째 줄: 226번째 줄:
 
**  G. Chudnovsky, Inventiones Mathematicae, Volume 61, Number 3 / 1980년 10월<br>
 
**  G. Chudnovsky, Inventiones Mathematicae, Volume 61, Number 3 / 1980년 10월<br>
  
* http://www.jstor.org/action/doBasicSearch?Query=gamma+function
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/10.1007/BF00389433
 
 
 
 
  
 
 
 
 
252번째 줄: 234번째 줄:
  
 
* http://twistedone151.wordpress.com/2008/05/26/monday-math-21-the-gamma-function-part-4/
 
* http://twistedone151.wordpress.com/2008/05/26/monday-math-21-the-gamma-function-part-4/
* 구글 블로그 검색 [http://blogsearch.google.com/blogsearch?q=%EA%B0%90%EB%A7%88%ED%95%A8%EC%88%98 http://blogsearch.google.com/blogsearch?q=감마함수]
 

2013년 3월 24일 (일) 16:59 판

개요

  • 팩토리얼 함수의 정의역을 복소수로 확장하는 함수이다.
  • 라그랑주(Lagrange)가 이 함수를 나타내기 위해 처음으로 그리스 대문자 감마(Γ)를 사용하였으며, 그 이후로 정식 표기로 굳어짐.
  • 자연수에 대해 팩토리얼과 같은 값을 가지면서 s > 0 일때 logΓ(s) 가 convex 하게 하는 유일한 함수이다.
  • 다음과 같은 중요한 성질을 갖는다\[\Gamma(s+1) =s\Gamma(s)\]\[\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\]\[\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)\]
  • 대수다양체의 periods 를 표현하는데 등장하며, \(s\)가 유리수일때의 감마함수의 값이 초월수인지, 그리고 그 값들 사이의 대수적 관계에 대한 문제는 중요 미해결 문제

 

 

정의

  • 실수부가 \(\Re s>0\)인 복소수 \(s>0\)에 대하여 다음과 같이 정의\[\Gamma(s) = \int_0^\infty e^{-t} t^{s} \frac{dt}{t}\]
  • \(\Gamma(s+1) =s\Gamma(s)\)
  • 자연수 \(n\)에 대하여 \(\Gamma(n)=(n-1)!\)
  • 가우스의 정의\[\Gamma(z) = \lim_{n \to \infty} \frac{n! \; n^z}{z \; (z+1)\cdots(z+n)} \]

 

 

해석적확장

  • 해석적확장(analytic continuation)
  • \(\Gamma(s+1) =s\Gamma(s)\)를 이용하여, 복소평면전체에서 정의된 meromorphic 함수로 이해가능
  • \(s=0,-1,-2\cdots\)에서 폴(pole)을 가진다

 

 

함수의 그래프

  • \(-4<s<4\)의 범위에서 다음과 같은 그래프를 가짐
    3197800-gamma.jpg
  • \(s>0\)일 때, \(\ln \Gamma(s)\)의 그래프
    3197800-logofgamma.jpg

 

 

 

무한곱표현

  • 바이어슈트라스 무한곱

\[\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\]

 

 

반사공식

  • \(\Gamma(1-z) \; \Gamma(z) = {\pi \over \sin{(\pi z)}} \,\!\)

(증명)

삼각함수의 무한곱 표현 \[\sin{\pi x} = \pi x \prod _{n=1}^{\infty } \left(1-\frac{x^2}{n^2}\right)\] 과 \[\Gamma(z) = \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}\] 를 써서 증명된다. ■

  • 다음 계산을 얻는다

\[\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}\]

  • 일반적으로 \[\Gamma(n+\frac{1}{2})=(\frac{1}{2})_n\sqrt{\pi}\]

(증명) \[\Gamma(n+\frac{1}{2})=\Gamma(\frac{2n+1}{2})=(\frac{2n-1}{2})\Gamma(\frac{2n-1}{2})=(\frac{2n-1}{2})(\frac{2n-3}{2})\Gamma(\frac{2n-3}{2})=(\frac{2n-1}{2})\cdots(\frac{1}{2})\Gamma(\frac{1}{2})=\frac{1}{2}\cdot\frac{3}{2}\cdot\frac{2n-1}{2}\sqrt{\pi}=(\frac{1}{2})_n\sqrt{\pi}\]■

 

 

 

 

곱셈공식

  • 이항

\[\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2^{\frac{1}{2}-2z} \; \sqrt{2\pi} \; \Gamma(2z) \,\!\]\[2^{2z}\Gamma(z) \; \Gamma\left(z + \frac{1}{2}\right) = 2\sqrt{\pi}\;\Gamma(2z)\]

  • 일반화\[\Gamma(z) \; \Gamma\left(z + \frac{1}{m}\right) \; \Gamma\left(z + \frac{2}{m}\right) \cdots \Gamma\left(z + \frac{m-1}{m}\right) = (2 \pi)^{(m-1)/2} \; m^{1/2 - mz} \; \Gamma(mz)\]

 

 

적분표현

  • Binet's second expression\[\operatorname{Re} z > 0 \] 일 때, \(\log \Gamma(z)=(z-\frac{1}{2})\log z -z+\frac{1}{2}\log 2\pi+ 2\int_0^{\infty}\frac{\tan^{-1}(t/z)}{e^{2\pi t} -1}dt\)
    http://dlmf.nist.gov/5/9/ 참고

 

 

Hurwitz 제타함수와의 관계

 

 

쿰머의 푸리에 급수

\[\begin{eqnarray}\log\Gamma(x)=\log\sqrt{2\pi}-\frac{1}{2}\log(2\sin\pi x)+\frac{1}{2}(\gamma+2\log\sqrt{2\pi})(1-2x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \\ =(\frac{1}{2}-x)(\gamma+\log 2)+(1-x)\log \pi -\frac{1}{2}\log(\sin\pi x)+\frac{1}{\pi}\sum_{k=1}^{\infty}\frac{\log k}{k}\sin 2\pi kx \nonumber \end{eqnarray} \]

 

 

테일러 급수

  • 로그감마 함수의 테일러 급수\[\log\Gamma(1+x) =-\gamma x+\sum_{k=2}^{\infty}(-1)^k \frac{\zeta(k)}{k}x^k\]

 

 

Digamma  함수

  • 감마함수의 로그미분으로 정의

\(\psi(x) =\frac{d}{dx} \ln{\Gamma(x)}= \frac{\Gamma'(x)}{\Gamma(x)}\)

 

 

오일러 베타적분

\(B(x,y)=\dfrac{\Gamma(x)\,\Gamma(y)}{\Gamma(x+y)}\)

 

 

감마함수와 초월수

  • 감마함수의 유리수에서의 값이 초월수인지의 문제.
  • 다음 경우가 초월수 임이 알려져 있다\[\Gamma(\frac{1}{3})\], \(\Gamma(\frac{2}{3})\), \(\Gamma(\frac{1}{4})\), \(\Gamma(\frac{3}{4})\), \(\Gamma(\frac{1}{6})\), \(\Gamma(\frac{5}{6})\)
  • 미해결 문제. 다음은 초월수인가?\[\Gamma(\frac{1}{5})\]
  • 무리수와 초월수 항목 참조

 

 

하위페이지

 

 

역사

 

 

관련된 항목들

 

 

매스매티카 파일 및 계산 리소스

 

사전형태의 자료

 

 

관련도서

  • Emil Artin, The Gamma Function

 

 

관련논문


 

 

블로그