"N차원 가우시안 적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
25번째 줄: 25번째 줄:
 
* [[헤세 판정법]]
 
* [[헤세 판정법]]
 
* [[가우스 변환 증명]]
 
* [[가우스 변환 증명]]
 +
 +
 +
==계산 리소스==
 +
* http://mathematica.stackexchange.com/questions/6845/how-to-deal-with-complicated-gaussian-integrals-in-mathematica/6846#6846
  
  

2013년 4월 3일 (수) 13:34 판

개요

\[\int_{\mathbb{R}^n}e^{-\frac{1}{2}\mathbf{x}^t A\mathbf{x}}d\mathbf{x}=\sqrt{\frac{(2\pi)^n}{\det{A}}}\]

  • 1차항이 있는 경우는 다음과 같이 주어진다

$$ \int_{\mathbb{R}^n} e^{-\frac{1}{2}\sum_{i,j=1}^{n}A_{ij} x_i x_j+\sum_{i=1}^{n}b_i x_i} d^nx=\sqrt{ \frac{(2\pi)^n}{\det{A}} }e^{\frac{1}{2}\mathbf{b}^{t}A^{-1}\mathbf{b}} $$

일반화

  • 적당한 decay 조건을 만족시키는 함수 $f$에 대하여, 다음이 성립한다

$$ \int f(\vec x) \, \exp\left( - \frac 1 2 \sum_{i,j=1}^{n}A_{ij} x_i x_j \right) d^nx=\sqrt{(2\pi)^n\over \det A} \, \left. \exp\left({1\over 2}\sum_{i,j=1}^{n}(A^{-1})_{ij}{\partial \over \partial x_i}{\partial \over \partial x_j}\right)f(\vec{x})\right|_{\vec{x}=0} $$


메모


관련된 항목들


계산 리소스


사전 형태의 자료