"Q-이항정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 q-이항정리로 바꾸었습니다.) |
|||
20번째 줄: | 20번째 줄: | ||
* [[이항계수와 조합]]<br><math>(1+x)^n=\sum_{r=0}^{n} {n\choose r}x^r = {n\choose 0} + {n\choose 1}x + \cdots + {n\choose r}x^r + \cdots + {n\choose n}x^n</math><br> | * [[이항계수와 조합]]<br><math>(1+x)^n=\sum_{r=0}^{n} {n\choose r}x^r = {n\choose 0} + {n\choose 1}x + \cdots + {n\choose r}x^r + \cdots + {n\choose n}x^n</math><br> | ||
− | * [[이항급수와 이항정리|이항정리]]<br><math>(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots</math><br> <br><math>(1-z)^{ | + | * [[이항급수와 이항정리|이항정리]]<br><math>(1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots</math><br> <br><math>\frac{1}{(1-z)^{a}}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)</math><br> |
* 위 식의 우변에 대해서는 [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-급수]]<br> | * 위 식의 우변에 대해서는 [[초기하급수(Hypergeometric series)|초기하급수(Hypergeometric series)와 q-급수]]<br> | ||
34번째 줄: | 34번째 줄: | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="margin: 0px; line-height: 2em;">이항정리와의 비교</h5> | ||
41번째 줄: | 45번째 줄: | ||
<br> | <br> | ||
− | <h5 style="margin: 0px; line-height: 2em;"> | + | <h5 style="margin: 0px; line-height: 2em;">오일러곱의 유도</h5> |
+ | |||
+ | * 이항정리로부터 [[q-초기하급수(q-hypergeometric series) (통합됨)|q-초기하급수(q-hypergeometric series)]]의 오일러곱을 얻을 수 있다<br><math>\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br><math>\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math><br> | ||
− | + | ||
− | + | <h5> </h5> | |
− | * [[q-이항계수 (가우스 다항식)|q-이항계수]][[q-이항계수 (가우스 다항식)|]]<math>\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r</math><br> (증명)<br> <br><math>\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r</math><br> | + | * 가우스 다항식 [[q-이항계수 (가우스 다항식)|q-이항계수]]<br>[[q-이항계수 (가우스 다항식)|]]<math>\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r</math><br> (증명)<br> q-이항정리에 <math>a=q^{-N}</math>, <math>z\to zq^{N}</math> 를 사용 ■<br> <br><math>\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r</math><br> |
2010년 1월 16일 (토) 09:40 판
이 항목의 스프링노트 원문주소
개요
- 이항정리의 q-analogue
- q-이항정리
\(\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^n_q}{(1-q)^n_q}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty \frac {1-azq^n}{1-zq^n}, |z|<1\)
Pochhammer 기호와 캐츠(Kac) 기호 참조 - q-초기하급수(q-hypergeometric series) 을 사용한 표현
\(_{1}\phi_0 \left[\begin{matrix} a \\ - \end{matrix} ; q,z \right]\)\(=\sum_{n=0}^\infty \frac {(a;q)_n} {(q;q)_n} z^n\)
이항정리과 이항정리
- 이항계수와 조합
\((1+x)^n=\sum_{r=0}^{n} {n\choose r}x^r = {n\choose 0} + {n\choose 1}x + \cdots + {n\choose r}x^r + \cdots + {n\choose n}x^n\) - 이항정리
\((1 + x)^\alpha = \sum_{k=0}^{\infty} {\alpha \choose k} x^k = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!} x^3 +\cdots\)
\(\frac{1}{(1-z)^{a}}=\sum_{n=0}^{\infty}\frac{(a)_n}{n!}z^n=1+az+\frac{a(a+1)}{2!}z^2+\frac{a(a+1)(a+2)}{3!}z^3+\cdots = \,_1F_0(a;z)\) - 위 식의 우변에 대해서는 초기하급수(Hypergeometric series)와 q-급수
q-이항정리
- (정리)
\(\sum_{n=0}^{\infty} \frac{(a;q)_n}{(q;q)_n}z^n=\sum_{n=0}^{\infty} \frac{(1-a)^n_q}{(1-q)^n_q}z^n=\frac{(az;q)_{\infty}}{(z;q)_{\infty}}=\prod_{n=0}^\infty \frac {1-azq^n}{1-zq^n}, |z|<1\)
이항정리와의 비교
오일러곱의 유도
- 이항정리로부터 q-초기하급수(q-hypergeometric series)의 오일러곱을 얻을 수 있다
\(\prod_{n=0}^{\infty}(1+zq^n)=\sum_{n\geq 0}\frac{q^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
\(\prod_{n=0}^{\infty}\frac{1}{1-zq^n}=\sum_{n\geq 0}\frac{1}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)
- 가우스 다항식 q-이항계수
[[q-이항계수 (가우스 다항식)|]]\(\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r\)
(증명)
q-이항정리에 \(a=q^{-N}\), \(z\to zq^{N}\) 를 사용 ■
\(\prod_{r=0}^{n-1}(1+zq^r)=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r\)
- Pochhammer 기호와 캐츠(Kac) 기호를 사용한 표현
\((1+z)_q^n=(-z;q)_n=(1+z)(1+zq)\cdots(1+zq^{n-1})= \sum_{r=0}^{n} {n \choose r}_q q^{r(r-1)/2}z^r\)
재미있는 사실
역사
메모
관련된 항목들
수학용어번역
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Gaussian_binomial
- http://en.wikipedia.org/wiki/
- http://www.wolframalpha.com/input/?i=
- NIST Digital Library of Mathematical Functions
- The On-Line Encyclopedia of Integer Sequences
관련논문
관련도서 및 추천도서
- 도서내검색
- 도서검색
관련기사
- 네이버 뉴스 검색 (키워드 수정)