"파피안(Pfaffian)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
6번째 줄: | 6번째 줄: | ||
* <math>\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)</math> | * <math>\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)</math> | ||
− | |||
− | |||
− | |||
− | |||
==교대행렬과 행렬식== | ==교대행렬과 행렬식== | ||
51번째 줄: | 47번째 줄: | ||
* 도미노 타일링 | * 도미노 타일링 | ||
* 다이머 모델 | * 다이머 모델 | ||
− | |||
* http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf | * http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf | ||
59번째 줄: | 54번째 줄: | ||
==매스매티카 파일 및 계산 리소스== | ==매스매티카 파일 및 계산 리소스== | ||
− | |||
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2RmNDAyYzItYjlmYy00MzM5LWJkZmQtYjdjOWZhNjM3MTI0&sort=name&layout=list&num=50 | * https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2RmNDAyYzItYjlmYy00MzM5LWJkZmQtYjdjOWZhNjM3MTI0&sort=name&layout=list&num=50 | ||
− | * http:// | + | * http://en.wikipedia.org/wiki/Talk%3APfaffian#Mathematica_code |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
79번째 줄: | 65번째 줄: | ||
* [[사각격자의 도미노 타일링 (dimer problem)]] | * [[사각격자의 도미노 타일링 (dimer problem)]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
110번째 줄: | 80번째 줄: | ||
* Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” <em>Physical Review E</em> 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.<br> | * Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” <em>Physical Review E</em> 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.<br> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
122번째 줄: | 87번째 줄: | ||
* Barry M McCoy, Advanced Statistical Mechanics<br> | * Barry M McCoy, Advanced Statistical Mechanics<br> | ||
** The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011 | ** The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
[[분류:선형대수학]] | [[분류:선형대수학]] |
2013년 5월 23일 (목) 11:56 판
개요
- 교대행렬(alternating matrix, 또는 skew-symmetric matrix)의 행렬식은 어떤 다항식의 제곱이 되는 성질을 가진다
- 교대행렬에 대해, 이 행렬식의 제곱근의 하나를 파피안으로 정의한다.
- \( \operatorname{pf(A)}^2=\operatorname{det(A)}\)
- \(\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)\)
교대행렬과 행렬식
- 2×2 교대행렬\[\left( \begin{array}{cc} 0 & t_{1,2} \\ -t_{1,2} & 0 \end{array} \right)\] 의 행렬식 \(t_{1,2}^2\)
- 4×4 교대행렬\[\left( \begin{array}{cccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 \end{array} \right)\], 행렬식 \(\left(t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\right){}^2\)
- 6×6 교대행렬\[\left( \begin{array}{cccccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} & t_{1,5} & t_{1,6} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} & t_{2,5} & t_{2,6} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} & t_{3,5} & t_{3,6} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 & t_{4,5} & t_{4,6} \\ -t_{1,5} & -t_{2,5} & -t_{3,5} & -t_{4,5} & 0 & t_{5,6} \\ -t_{1,6} & -t_{2,6} & -t_{3,6} & -t_{4,6} & -t_{5,6} & 0 \end{array} \right)\],
행렬식 \(\left(t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\right){}^2\)
파피안
- \(A=(t_{i,j})\) 로 주어진 교대행렬에 대하여 파피안을 다음과 같이 정의함\[\operatorname{pf}(A) = \frac{1}{2^n n!}\sum_{\sigma\in S_{2n}}\operatorname{sgn}(\sigma)\prod_{i=1}^{n}t_{\sigma(2i-1),\sigma(2i)}\]
- n=1인 경우\[t_{1,2}\]
- n=2인 경우\[t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\]
- n=3 인 경우\[t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\]
역사
메모
- number of perfect matchings on a planar rectangular lattice
- every non-zero term in the Pfaffian of the adjacency matrix of a graph G corresponds to a perfect matching.
- 통계물리에서 중요한 역할
- 도미노 타일링
- 다이머 모델
- http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf
매스매티카 파일 및 계산 리소스
- https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2RmNDAyYzItYjlmYy00MzM5LWJkZmQtYjdjOWZhNjM3MTI0&sort=name&layout=list&num=50
- http://en.wikipedia.org/wiki/Talk%3APfaffian#Mathematica_code
관련된 항목들
사전 형태의 자료
관련논문
- Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” Physical Review E 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.
관련도서
- Barry M McCoy, Advanced Statistical Mechanics
- The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011