"파피안(Pfaffian)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
6번째 줄: 6번째 줄:
 
* <math>\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)</math>
 
* <math>\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)</math>
  
 
 
 
 
 
  
 
 
  
 
==교대행렬과 행렬식==
 
==교대행렬과 행렬식==
51번째 줄: 47번째 줄:
 
* 도미노 타일링
 
* 도미노 타일링
 
* 다이머 모델
 
* 다이머 모델
* 매스매티카 코드 http://en.wikipedia.org/wiki/Talk%3APfaffian#Mathematica_code
 
 
* http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf
 
* http://www.science.uva.nl/onderwijs/thesis/centraal/files/f887198315.pdf
  
59번째 줄: 54번째 줄:
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
 
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2RmNDAyYzItYjlmYy00MzM5LWJkZmQtYjdjOWZhNjM3MTI0&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxN2RmNDAyYzItYjlmYy00MzM5LWJkZmQtYjdjOWZhNjM3MTI0&sort=name&layout=list&num=50
* http://www.wolframalpha.com/input/?i=
+
* http://en.wikipedia.org/wiki/Talk%3APfaffian#Mathematica_code
* http://functions.wolfram.com/
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://people.math.sfu.ca/%7Ecbm/aands/toc.htm Abramowitz and Stegun Handbook of mathematical functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://numbers.computation.free.fr/Constants/constants.html Numbers, constants and computation]
 
* [https://docs.google.com/open?id=0B8XXo8Tve1cxMWI0NzNjYWUtNmIwZi00YzhkLTkzNzQtMDMwYmVmYmIxNmIw 매스매티카 파일 목록]
 
 
 
 
 
  
 
 
 
 
79번째 줄: 65번째 줄:
 
* [[사각격자의 도미노 타일링 (dimer problem)]]
 
* [[사각격자의 도미노 타일링 (dimer problem)]]
  
 
 
 
 
 
 
==수학용어번역==
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
  
 
 
 
 
110번째 줄: 80번째 줄:
  
 
*  Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” <em>Physical Review E</em> 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.<br>
 
*  Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” <em>Physical Review E</em> 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.<br>
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
  
 
 
 
 
122번째 줄: 87번째 줄:
 
*  Barry M McCoy, Advanced Statistical Mechanics<br>
 
*  Barry M McCoy, Advanced Statistical Mechanics<br>
 
** The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011
 
** The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
  
 
 
 
 
 
  
==링크==
 
  
* [http://www.ams.org/news/math-in-the-media/mathdigest-index Summaries of Media Coverage of Math]
 
 
[[분류:선형대수학]]
 
[[분류:선형대수학]]

2013년 5월 23일 (목) 11:56 판

개요

  • 교대행렬(alternating matrix, 또는 skew-symmetric matrix)의 행렬식은 어떤 다항식의 제곱이 되는 성질을 가진다
  • 교대행렬에 대해, 이 행렬식의 제곱근의 하나를 파피안으로 정의한다.
  • \( \operatorname{pf(A)}^2=\operatorname{det(A)}\)
  • \(\operatorname{pf}(BAB^T)= \det(B)\operatorname{pf}(A)\)


교대행렬과 행렬식

  • 2×2 교대행렬\[\left( \begin{array}{cc} 0 & t_{1,2} \\ -t_{1,2} & 0 \end{array} \right)\] 의 행렬식 \(t_{1,2}^2\)
  • 4×4 교대행렬\[\left( \begin{array}{cccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 \end{array} \right)\], 행렬식 \(\left(t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\right){}^2\)
  • 6×6 교대행렬\[\left( \begin{array}{cccccc} 0 & t_{1,2} & t_{1,3} & t_{1,4} & t_{1,5} & t_{1,6} \\ -t_{1,2} & 0 & t_{2,3} & t_{2,4} & t_{2,5} & t_{2,6} \\ -t_{1,3} & -t_{2,3} & 0 & t_{3,4} & t_{3,5} & t_{3,6} \\ -t_{1,4} & -t_{2,4} & -t_{3,4} & 0 & t_{4,5} & t_{4,6} \\ -t_{1,5} & -t_{2,5} & -t_{3,5} & -t_{4,5} & 0 & t_{5,6} \\ -t_{1,6} & -t_{2,6} & -t_{3,6} & -t_{4,6} & -t_{5,6} & 0 \end{array} \right)\],
    행렬식 \(\left(t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\right){}^2\)

 

 

파피안

  • \(A=(t_{i,j})\) 로 주어진 교대행렬에 대하여 파피안을 다음과 같이 정의함\[\operatorname{pf}(A) = \frac{1}{2^n n!}\sum_{\sigma\in S_{2n}}\operatorname{sgn}(\sigma)\prod_{i=1}^{n}t_{\sigma(2i-1),\sigma(2i)}\]
  • n=1인 경우\[t_{1,2}\]
  • n=2인 경우\[t_{1,4} t_{2,3}-t_{1,3} t_{2,4}+t_{1,2} t_{3,4}\]
  • n=3 인 경우\[t_{1,6} t_{2,5} t_{3,4}-t_{1,5} t_{2,6} t_{3,4}-t_{1,6} t_{2,4} t_{3,5}+t_{1,4} t_{2,6} t_{3,5}+t_{1,5} t_{2,4} t_{3,6}-t_{1,4} t_{2,5} t_{3,6}+t_{1,6} t_{2,3} t_{4,5}-t_{1,3} t_{2,6} t_{4,5}+t_{1,2} t_{3,6} t_{4,5}-t_{1,5} t_{2,3} t_{4,6}+t_{1,3} t_{2,5} t_{4,6}-t_{1,2} t_{3,5} t_{4,6}+t_{1,4} t_{2,3} t_{5,6}-t_{1,3} t_{2,4} t_{5,6}+t_{1,2} t_{3,4} t_{5,6}\]

 

 

역사

 

 

 

메모

 

 

매스매티카 파일 및 계산 리소스

 

 

관련된 항목들


 

사전 형태의 자료

 

 

관련논문

  • Wu, F. Y. 2006. “Pfaffian solution of a dimer-monomer problem: Single monomer on the boundary.” Physical Review E 74 (2): 020104. doi:10.1103/PhysRevE.74.020104.

 

관련도서

  • Barry M McCoy, Advanced Statistical Mechanics
    • The Pfaffian solution of the Ising model DOI:10.1093/acprof:oso/9780199556632.003.0011