"리만-로흐 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
10번째 줄: | 10번째 줄: | ||
:<math>h^{0}(L)-h^{0}(L^{-1}\otimes K)=d-g+1</math> | :<math>h^{0}(L)-h^{0}(L^{-1}\otimes K)=d-g+1</math> | ||
여기서 $K$는 $X$에 정의된 canonical bundle | 여기서 $K$는 $X$에 정의된 canonical bundle | ||
+ | |||
+ | |||
+ | ==line bundle== | ||
+ | * divisor $D=p_1+\cdots+p_d$, $p_1,\cdot, p_d$ distinct | ||
+ | * $L_D$ : line bundle | ||
+ | * $H^0(L)$ : space of meromorphic functions with at worst simple poles at the $p_i$ | ||
+ | * $H^0(L^{-1}\otimes K)$ : space of holomorphi 1-forms vanishing at the $p_i$ | ||
2013년 6월 13일 (목) 09:22 판
개요
- X : genus 가 g인 컴팩트 리만곡면
- L : line bundle of degree d
- \(H^{0}(L),H^{1}(L)\) : $L$의 holomorphic section으로 주어지는 sheaf에 대한 코호몰로지 군. 유한차원 복소벡터공간
- $p>1$이면, $H^{p}(L)=0$
- $h^{p}(L)=\operatorname{dim}H^{p}(L)$
- 리만-로흐 정리
\[h^{0}(L)-h^{1}(L)=d-g+1\]
- 세르의 쌍대성을 이용하면, 다음과 같이 표현된다
\[h^{0}(L)-h^{0}(L^{-1}\otimes K)=d-g+1\] 여기서 $K$는 $X$에 정의된 canonical bundle
line bundle
- divisor $D=p_1+\cdots+p_d$, $p_1,\cdot, p_d$ distinct
- $L_D$ : line bundle
- $H^0(L)$ : space of meromorphic functions with at worst simple poles at the $p_i$
- $H^0(L^{-1}\otimes K)$ : space of holomorphi 1-forms vanishing at the $p_i$
메모
- 코쉬-리만 연산자의 index = 1-g
- Hitchin, Nigel. 2010. “The Atiyah–Singer Index Theorem.” In The Abel Prize, edited by Helge Holden and Ragni Piene, 117–152. Springer Berlin Heidelberg. http://link.springer.com/chapter/10.1007/978-3-642-01373-7_7.
- http://mathoverflow.net/questions/7689/why-is-riemann-roch-an-index-problem