"리만 세타 함수"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
1번째 줄: | 1번째 줄: | ||
==개요== | ==개요== | ||
+ | * $\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\}$ | ||
+ | * $\Omega\in \mathcal{H}_g$, $\mathbb{z}\in \mathbb{C}^g$ | ||
+ | * 리만세타함수 $\Theta: \mathcal{H}_g\times \mathbb{C}^g\to \mathbb{C}$ 를 다음과 같이 정의 ($\mathbf{\nu _1}, \mathbf{\nu _2}\in \mathbb{C}^g$ : characteristic) | ||
+ | $$ | ||
+ | \Theta | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | \mathbf{\nu _1} \\ | ||
+ | \mathbf{\nu _2} \\ | ||
+ | \end{array} | ||
+ | \right] | ||
+ | (\Omega ,\mathbf{z}) | ||
+ | =\sum_{{\mathbf{n}\in{\mathbb Z}^g}} e^{2 \pi i \left(\frac{1}{2}\left(\mathbf{\nu _1}+ \mathbf{n} \right)\Omega \left(\mathbf{\nu _1}+ \mathbf{n} \right)+2 \left(\mathbf{\nu _1}+ \mathbf{n}\right)\left(\mathbf{\nu _2}+\mathbf{z}\right)\right)} | ||
+ | $$ | ||
+ | * characteristic이 $\mathbf{\nu _1}=\mathbf{\nu _2}=0\in \mathbb{C}^g$인 경우 | ||
+ | $$ | ||
+ | \Theta | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | \mathbf{0} \\ | ||
+ | \mathbf{0} \\ | ||
+ | \end{array} | ||
+ | \right] | ||
+ | (\Omega ,\mathbf{z})=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ==자코비 세타함수== | ||
+ | * [[자코비 세타함수와 자코비 형식]] | ||
+ | * $g=1$인 경우, $q=e^{2\pi i \tau}$ | ||
+ | $$ | ||
+ | \begin{align*} | ||
+ | \theta_{11}(z;\tau) | ||
+ | &:= | ||
+ | \Theta | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | 1/2 \\ | ||
+ | 1/2 \\ | ||
+ | \end{array} | ||
+ | \right](\tau ,z) | ||
+ | = | ||
+ | \sum_{n \in \mathbb{Z}} | ||
+ | q^{\frac{1}{2} \left( n+ \frac{1}{2} \right)^2} \, | ||
+ | \E^{2 \pi i \left(n+\frac{1}{2} \right) \, | ||
+ | \left( z+\frac{1}{2} \right) | ||
+ | } | ||
+ | \\ | ||
+ | \theta_{10}(z;\tau) | ||
+ | &:= | ||
+ | \Theta | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | 1/2 \\ | ||
+ | 0 \\ | ||
+ | \end{array} | ||
+ | \right](\tau ,z) | ||
+ | = | ||
+ | \sum_{n \in \mathbb{Z}} | ||
+ | q^{\frac{1}{2} \left( n + \frac{1}{2} \right)^2} \, | ||
+ | \E^{2 \pi i \left( n+\frac{1}{2} \right) z} | ||
+ | \\ | ||
+ | \theta_{00} (z;\tau) | ||
+ | &:= | ||
+ | \Theta | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | 0 \\ | ||
+ | 0 \\ | ||
+ | \end{array} | ||
+ | \right](\tau ,z) | ||
+ | = | ||
+ | \sum_{n \in \mathbb{Z}} | ||
+ | q^{\frac{1}{2} n^2} \, | ||
+ | \E^{2 \pi i n z} | ||
+ | \\ | ||
+ | \theta_{01} (z;\tau) | ||
+ | &:= | ||
+ | \Theta | ||
+ | \left[ | ||
+ | \begin{array}{c} | ||
+ | 0 \\ | ||
+ | 1/2 \\ | ||
+ | \end{array} | ||
+ | \right](\tau ,z) | ||
+ | = | ||
+ | \sum_{n \in \mathbb{Z}} | ||
+ | q^{\frac{1}{2} n^2} \, | ||
+ | \E^{2 \pi i n \left( z+\frac{1}{2} \right) } | ||
+ | \end{align*} | ||
+ | $$ | ||
+ | |||
+ | |||
+ | ==예== | ||
[[오일러의 오각수정리(pentagonal number theorem)]] | [[오일러의 오각수정리(pentagonal number theorem)]] | ||
7번째 줄: | 101번째 줄: | ||
<math>(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots</math> | <math>(1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots</math> | ||
− | + | ||
− | 의 | + | 의 양변에 <math>q^{1/24}</math>를 곱하여, [[데데킨트 에타함수]]의 세타함수 표현을 얻는다 |
<math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}</math> | <math>\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}</math> | ||
− | + | ||
− | |||
− | |||
− | |||
==역사== | ==역사== | ||
− | + | * 자코비 fundamenta nova | |
− | * | ||
− | |||
− | |||
* [[수학사 연표]] | * [[수학사 연표]] | ||
− | |||
− | + | ||
− | |||
− | |||
==메모== | ==메모== | ||
+ | * [http://depts.washington.edu/bdecon/papers/pdfs/Swierczewski_Deconinck1.pdf Computing Riemann theta functions in Sage with applications] | ||
+ | * http://mathoverflow.net/questions/64261/whats-the-difference-between-a-riemann-theta-and-a-siegel-theta-function | ||
+ | * [http://swc.math.arizona.edu/aws/09/ Arizona Winter School 2009: Quadratic Forms] | ||
+ | * A simple proof of the modular identity for theta series http://www2.math.kyushu-u.ac.jp/~taguchi/bib/theta-final.pdf | ||
+ | * [[자코비의 네 제곱수 정리]] | ||
+ | * 'singular series' | ||
+ | ** Dickson | ||
+ | ** Mordell | ||
+ | ** Hardy | ||
+ | ** Bateman | ||
− | + | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
+ | |||
+ | ==관련된 항목들== | ||
+ | * [[리만 bilinear relation]] | ||
+ | * [[자코비 세타함수와 자코비 형식]] | ||
+ | * [[격자의 세타함수]] | ||
+ | * [[모듈라 형식(modular forms)]] | ||
− | |||
− | |||
− | + | ==사전 형태의 자료== | |
− | * | + | * https://en.wikipedia.org/wiki/Siegel_modular_form |
− | * [ | + | * [http://dlmf.nist.gov/21 Chapter 21 Multidimensional Theta Functions] |
2013년 6월 16일 (일) 07:59 판
개요
- $\mathcal{H}_g=\left\{\tau \in M_{g \times g}(\mathbb{C}) \ \big| \ \tau^{\mathrm{T}}=\tau, \textrm{Im}(\tau) \text{ positive definite} \right\}$
- $\Omega\in \mathcal{H}_g$, $\mathbb{z}\in \mathbb{C}^g$
- 리만세타함수 $\Theta: \mathcal{H}_g\times \mathbb{C}^g\to \mathbb{C}$ 를 다음과 같이 정의 ($\mathbf{\nu _1}, \mathbf{\nu _2}\in \mathbb{C}^g$ : characteristic)
$$ \Theta \left[ \begin{array}{c} \mathbf{\nu _1} \\ \mathbf{\nu _2} \\ \end{array} \right] (\Omega ,\mathbf{z}) =\sum_{{\mathbf{n}\in{\mathbb Z}^g}} e^{2 \pi i \left(\frac{1}{2}\left(\mathbf{\nu _1}+ \mathbf{n} \right)\Omega \left(\mathbf{\nu _1}+ \mathbf{n} \right)+2 \left(\mathbf{\nu _1}+ \mathbf{n}\right)\left(\mathbf{\nu _2}+\mathbf{z}\right)\right)} $$
- characteristic이 $\mathbf{\nu _1}=\mathbf{\nu _2}=0\in \mathbb{C}^g$인 경우
$$ \Theta \left[ \begin{array}{c} \mathbf{0} \\ \mathbf{0} \\ \end{array} \right] (\Omega ,\mathbf{z})=\sum_{{\mathbf{n}\in{\mathbb Z}^g}}e^{{2\pi i\left(\frac{1}{2}\mathbf{n}\cdot\boldsymbol{\Omega}\cdot\mathbf{n}+\mathbf{n}\cdot\mathbf{z}\right)}} $$
자코비 세타함수
- 자코비 세타함수와 자코비 형식
- $g=1$인 경우, $q=e^{2\pi i \tau}$
$$ \begin{align*} \theta_{11}(z;\tau) &:= \Theta \left[ \begin{array}{c} 1/2 \\ 1/2 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} \left( n+ \frac{1}{2} \right)^2} \, \E^{2 \pi i \left(n+\frac{1}{2} \right) \, \left( z+\frac{1}{2} \right) } \\ \theta_{10}(z;\tau) &:= \Theta \left[ \begin{array}{c} 1/2 \\ 0 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} \left( n + \frac{1}{2} \right)^2} \, \E^{2 \pi i \left( n+\frac{1}{2} \right) z} \\ \theta_{00} (z;\tau) &:= \Theta \left[ \begin{array}{c} 0 \\ 0 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} n^2} \, \E^{2 \pi i n z} \\ \theta_{01} (z;\tau) &:= \Theta \left[ \begin{array}{c} 0 \\ 1/2 \\ \end{array} \right](\tau ,z) = \sum_{n \in \mathbb{Z}} q^{\frac{1}{2} n^2} \, \E^{2 \pi i n \left( z+\frac{1}{2} \right) } \end{align*} $$
예
오일러의 오각수정리(pentagonal number theorem)
\(\prod_{n=1}^\infty (1-x^n)=\sum_{k=-\infty}^\infty(-1)^kx^{k(3k-1)/2}\)
\((1-x)(1-x^2)(1-x^3) \cdots = 1 - x - x^2 + x^5 + x^7 - x^{12} - x^{15} + x^{22} + x^{26} + \cdots\)
의 양변에 \(q^{1/24}\)를 곱하여, 데데킨트 에타함수의 세타함수 표현을 얻는다
\(\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^{n})=\sum_{n=-\infty}^\infty(-1)^n q^{\frac{(6n+1)^2}{24}}\)
역사
- 자코비 fundamenta nova
- 수학사 연표
메모
- Computing Riemann theta functions in Sage with applications
- http://mathoverflow.net/questions/64261/whats-the-difference-between-a-riemann-theta-and-a-siegel-theta-function
- Arizona Winter School 2009: Quadratic Forms
- A simple proof of the modular identity for theta series http://www2.math.kyushu-u.ac.jp/~taguchi/bib/theta-final.pdf
- 자코비의 네 제곱수 정리
- 'singular series'
- Dickson
- Mordell
- Hardy
- Bateman
관련된 항목들