"대칭다항식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
==이 항목의 수학노트 원문주소==
 
 
* [[대칭군과 대칭다항식|대칭다항식]]
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
  
56번째 줄: 48번째 줄:
 
   
 
   
 
$H(x)=\prod_{i}\frac{1}{1-x x_i}$
 
$H(x)=\prod_{i}\frac{1}{1-x x_i}$
 +
  
 
==역사==
 
==역사==
87번째 줄: 80번째 줄:
 
 
 
 
  
==수학용어번역==
 
 
*  단어사전<br>
 
** http://translate.google.com/#en|ko|
 
** http://ko.wiktionary.org/wiki/
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.kss.or.kr/pds/sec/dic.aspx 한국통계학회 통계학 용어 온라인 대조표]
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
  
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
 
* http://ko.wikipedia.org/wiki/
 
 
* http://en.wikipedia.org/wiki/Schur_polynomial
 
* http://en.wikipedia.org/wiki/Schur_polynomial
* [http://eom.springer.de/default.htm The Online Encyclopaedia of Mathematics]
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://eqworld.ipmnet.ru/ The World of Mathematical Equations]
 
  
 
 
  
 
 
 
 
  
 
==리뷰논문, 에세이, 강의노트==
 
==리뷰논문, 에세이, 강의노트==
 
 
* J. Dieudonné, Schur functions and group representations , Young tableaux and Schur functors in algebra and geometry, Astéerisque, 87--88 , 7--19 (1981)
 
* J. Dieudonné, Schur functions and group representations , Young tableaux and Schur functors in algebra and geometry, Astéerisque, 87--88 , 7--19 (1981)
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==관련도서==
 
==관련도서==
 
+
* Lascoux, Alain. 2003. Symmetric Functions and Combinatorial Operators on Polynomials. American Mathematical Soc.
 
* I. G.Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, second edition, Oxford, 1995.
 
* I. G.Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, second edition, Oxford, 1995.
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 

2013년 11월 30일 (토) 16:22 판

개요

  • n 변수의 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 의 모든 permutation에 의해서 불변일 때, 대칭다항식이라 한다 ( 대칭군 (symmetric group) )
  • 다항식 \(f(x_1,x_2,\cdots,x_n)\) 이 \(x_1,x_2,\cdots,x_n\) 중에서 두 변수를 바꾸는 permutation 즉 transposition 에 의해 부호가 바뀔 때, 이를 교대다항식(alternating polynomial)이라 한다

 

 

대칭다항식의 예

  • 세 변수의 경우
  • \(x_1+x_2+x_3\)
  • \(x_1 x_2+x_1 x_3+x_2 x_3\)
  • \(x_1 x_2 x_3\)

 

 

well-known bases

  • algebraic independence result (Ruffini, around 1800)

 


(정리)

$E(-x)P(x)=x E'(-x)$

where

$P(x)=\sum_{i\geq 1} x_i^{n}x^n$

$E(x)=x^{n}-e_1 x^{n-1}+e_2 x^{n-2}+\cdots$


$H(x)=\prod_{i}\frac{1}{1-x x_i}$


역사

 

 

 

메모

 

 

 

관련된 항목들

 


 

사전 형태의 자료


 

리뷰논문, 에세이, 강의노트

  • J. Dieudonné, Schur functions and group representations , Young tableaux and Schur functors in algebra and geometry, Astéerisque, 87--88 , 7--19 (1981)


관련도서

  • Lascoux, Alain. 2003. Symmetric Functions and Combinatorial Operators on Polynomials. American Mathematical Soc.
  • I. G.Macdonald, Symmetric functions and Hall polynomials, Clarendon Press, second edition, Oxford, 1995.