"디리클레 L-함수의 미분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “수학사연표” 문자열을 “수학사 연표” 문자열로)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
  
 
+
 
==리만제타함수==
 
==리만제타함수==
  
* [[리만제타함수]]<br>[[리만제타함수|리만제타함수]]<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math><br>
+
* [[리만제타함수]]는 다음을 만족한다
 +
:<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math>
  
 
+
  
 
==디리클레 L-함수의 미분==
 
==디리클레 L-함수의 미분==
  
* <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴:<math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br>
+
* <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴:<math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math>
  
 
+
  
 
+
  
 
==예==
 
==예==
  
* [[디리클레 베타함수]]:<math>K=\mathbb{Q}(i)</math>:<math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math><br>
+
* 수체 <math>K=\mathbb{Q}(i)</math>에 대하여 다음이 성립한다
* <math>K=\mathbb{Q}(\omega)</math>, <math>\omega^2+\omega+1=0</math>:<math>L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})</math><br>
+
:<math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math>
 +
여기서 $\beta$는 [[디리클레 베타함수]]
 +
* 수체 <math>K=\mathbb{Q}(\omega)</math>, <math>\omega^2+\omega+1=0</math>에 대하여 다음이 성립한다
 +
:<math>L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})</math>
  
 
+
  
==재미있는 사실==
 
  
 
+
 
 
* Math Overflow http://mathoverflow.net/search?q=
 
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
==역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사 연표]]
 
*  
 
 
 
 
 
 
 
==메모==
 
 
 
 
 
 
 
 
 
 
==관련된 항목들==
 
==관련된 항목들==
  
* [[Chowla-셀베르그 공식]]<br>
+
* [[Chowla-셀베르그 공식]]
* [[Birch and Swinnerton-Dyer 추측]]<br>
+
* [[Birch and Swinnerton-Dyer 추측]]
 
 
  
 
 
 
==수학용어번역==
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
==관련논문==
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
==관련도서==
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
==관련기사==
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
==블로그==
 

2013년 12월 29일 (일) 17:39 판

개요

리만제타함수

\[\zeta'(0)=-\log{\sqrt{2\pi}}\]


디리클레 L-함수의 미분

  • \(d_K\)를 판별식으로 갖는 복소이차수체 \(K\)에 대하여, 디리클레 L-함수는 다음을 만족시킴\[L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\]



  • 수체 \(K=\mathbb{Q}(i)\)에 대하여 다음이 성립한다

\[\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\] 여기서 $\beta$는 디리클레 베타함수

  • 수체 \(K=\mathbb{Q}(\omega)\), \(\omega^2+\omega+1=0\)에 대하여 다음이 성립한다

\[L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})\]



관련된 항목들