"쌍곡 정육면체"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
24번째 줄: 24번째 줄:
 
* http://www.wolframalpha.com/input/?i=5.074708032048268125
 
* http://www.wolframalpha.com/input/?i=5.074708032048268125
 
[[분류:쌍곡기하학]]
 
[[분류:쌍곡기하학]]
 +
[[분류:다양체]]

2014년 1월 10일 (금) 03:30 판

개요

  • 3차원 푸앵카레 unit ball 모델에서의 쌍곡 정육면체
  • 꼭지점들이 unit ball에 놓여 있는 경우 (ideal hyperbolic regular cube)

쌍곡 정육면체1.png

  • 세 이면각이 각각 $\frac{\pi }{2},\frac{\pi }{3},\frac{\pi }{6}$인 사면체

쌍곡 정육면체2.png


쌍곡다양체로서의 부피

  • $15 \Lambda \left(\frac{\pi }{3}\right)=6 \left(\Lambda \left(\frac{\pi }{6}\right)+\Lambda \left(\frac{\pi }{3}\right)+\Lambda \left(\frac{\pi }{2}\right)\right)=5.0747080320482681251\cdots$
  • 여기서 $\Lambda$는 로바체프스키 함수


관련된 항목들


매스매티카 파일 및 계산 리소스