"디리클레 L-함수의 미분"의 두 판 사이의 차이
Pythagoras0 (토론 | 기여) 잔글 (Pythagoras0 사용자가 L-함수의 미분 문서를 디리클레 L-함수의 미분 문서로 옮겼습니다.) |
Pythagoras0 (토론 | 기여) |
||
11번째 줄: | 11번째 줄: | ||
==디리클레 L-함수의 미분== | ==디리클레 L-함수의 미분== | ||
− | * <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴:<math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math> | + | * <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴 |
+ | :<math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math> | ||
− | |||
− | |||
− | == | + | ==예1== |
* 수체 <math>K=\mathbb{Q}(i)</math>에 대하여 다음이 성립한다 | * 수체 <math>K=\mathbb{Q}(i)</math>에 대하여 다음이 성립한다 | ||
:<math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math> | :<math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math> | ||
여기서 $\beta$는 [[디리클레 베타함수]] | 여기서 $\beta$는 [[디리클레 베타함수]] | ||
+ | |||
+ | <math>f</math>가 <math>f(3)=-1</math>인 주기가 4인 디리클레 캐릭터라고 하면, <math>p(z)=z-z^3</math> | ||
+ | |||
+ | <math>L(s) = \sum_{n\geq 1}\frac{f(n)}{n^s}</math> | ||
+ | |||
+ | <math>L'(1)-\gamma \frac{\pi}{4}=\int_0^{1}\frac{z-z^3}{1-z^4}\log \log\frac{1}{z} \,\frac{dz}{z}=\int_0^{1}\log \log\frac{1}{z} \,\frac{dz}{1+z^2}=\int_1^{\infty}\log \log u \,\frac{du}{1+u^2}</math> | ||
+ | |||
+ | <math>=\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx</math> | ||
+ | |||
+ | |||
+ | |||
+ | 이제 <math>L'(1)</math> 의 값을 구하면 된다. | ||
+ | |||
+ | <math>L(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}</math> 와 [[후르비츠 제타함수(Hurwitz zeta function)|Hurwitz 제타함수]] 의 에르미트 표현 <math>\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}</math> 을 사용하면, | ||
+ | |||
+ | <math>L'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}</math> | ||
+ | |||
+ | <math>L'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-L(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})L(s)</math> | ||
+ | |||
+ | 가 만족시키는 함수방정식 | ||
+ | |||
+ | <math>\Lambda(s)=\Lambda(1-s)</math> | ||
+ | |||
+ | 을 사용하자. | ||
+ | |||
+ | <math>L(0)=\frac{1}{2}</math> 을 쉽게 얻을 수 있다. | ||
+ | |||
+ | 한편 [[다이감마 함수(digamma function)]] 의 값 <math>\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma</math>에서 <math>\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)</math> 를 활용하여, | ||
+ | |||
+ | <math>L_{-4}'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})</math> | ||
+ | |||
+ | 를 얻는다. | ||
+ | |||
+ | |||
+ | |||
+ | 따라서 | ||
+ | :<math>\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=L'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln(\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})</math> | ||
+ | |||
+ | * [[로그 탄젠트 적분(log tangent integral)]] 항목 참조 | ||
+ | |||
+ | |||
+ | ==예2== | ||
* 수체 <math>K=\mathbb{Q}(\omega)</math>, <math>\omega^2+\omega+1=0</math>에 대하여 다음이 성립한다 | * 수체 <math>K=\mathbb{Q}(\omega)</math>, <math>\omega^2+\omega+1=0</math>에 대하여 다음이 성립한다 | ||
:<math>L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})</math> | :<math>L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})</math> | ||
− | + | ||
==관련된 항목들== | ==관련된 항목들== | ||
− | |||
* [[Chowla-셀베르그 공식]] | * [[Chowla-셀베르그 공식]] | ||
* [[Birch and Swinnerton-Dyer 추측]] | * [[Birch and Swinnerton-Dyer 추측]] | ||
+ | |||
+ | |||
+ | ==관련논문== | ||
+ | * Yang, T. (2010). The Chowla-Selberg formula and the Colmez conjecture. Canad. J. Math, 62(2), 456-472. http://www.math.wisc.edu/~thyang/ColmezConjectureFinal2010.pdf | ||
+ | * Anderson, G. W. (1982). [http://archive.numdam.org/ARCHIVE/CM/CM_1982__45_3/CM_1982__45_3_315_0/CM_1982__45_3_315_0.pdf Logarithmic derivatives of Dirichlet $ L $-functions and the periods of abelian varieties]. Compositio Mathematica, 45(3), 315-332. |
2014년 1월 28일 (화) 03:19 판
개요
리만제타함수
- 리만제타함수는 다음을 만족한다
\[\zeta'(0)=-\log{\sqrt{2\pi}}\]
디리클레 L-함수의 미분
- \(d_K\)를 판별식으로 갖는 복소이차수체 \(K\)에 대하여, 디리클레 L-함수는 다음을 만족시킴
\[L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\]
예1
- 수체 \(K=\mathbb{Q}(i)\)에 대하여 다음이 성립한다
\[\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\] 여기서 $\beta$는 디리클레 베타함수
\(f\)가 \(f(3)=-1\)인 주기가 4인 디리클레 캐릭터라고 하면, \(p(z)=z-z^3\)
\(L(s) = \sum_{n\geq 1}\frac{f(n)}{n^s}\)
\(L'(1)-\gamma \frac{\pi}{4}=\int_0^{1}\frac{z-z^3}{1-z^4}\log \log\frac{1}{z} \,\frac{dz}{z}=\int_0^{1}\log \log\frac{1}{z} \,\frac{dz}{1+z^2}=\int_1^{\infty}\log \log u \,\frac{du}{1+u^2}\)
\(=\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx\)
이제 \(L'(1)\) 의 값을 구하면 된다.
\(L(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}\) 와 Hurwitz 제타함수 의 에르미트 표현 \(\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}\) 을 사용하면,
\(L'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}\)
\(L'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-L(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}\)
\(\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})L(s)\)
가 만족시키는 함수방정식
\(\Lambda(s)=\Lambda(1-s)\)
을 사용하자.
\(L(0)=\frac{1}{2}\) 을 쉽게 얻을 수 있다.
한편 다이감마 함수(digamma function) 의 값 \(\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\)에서 \(\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)\) 를 활용하여,
\(L_{-4}'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\)
를 얻는다.
따라서 \[\int_{\pi/4}^{\pi/2} \ln \ln \tan x\, dx=L'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln(\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})\]
예2
- 수체 \(K=\mathbb{Q}(\omega)\), \(\omega^2+\omega+1=0\)에 대하여 다음이 성립한다
\[L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})\]
관련된 항목들
관련논문
- Yang, T. (2010). The Chowla-Selberg formula and the Colmez conjecture. Canad. J. Math, 62(2), 456-472. http://www.math.wisc.edu/~thyang/ColmezConjectureFinal2010.pdf
- Anderson, G. W. (1982). Logarithmic derivatives of Dirichlet $ L $-functions and the periods of abelian varieties. Compositio Mathematica, 45(3), 315-332.