"스미스-민코프스키-지겔 질량 공식"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
56번째 줄: | 56번째 줄: | ||
* [http://www.math.umn.edu/~garrett/m/v/easy_siegel_weil.pdf Proof of a simple case of the Siegel-Weil formula] | * [http://www.math.umn.edu/~garrett/m/v/easy_siegel_weil.pdf Proof of a simple case of the Siegel-Weil formula] | ||
* [http://www.math.umn.edu/~garrett/m/v/siegel_integral.pdf Siegel's integral] | * [http://www.math.umn.edu/~garrett/m/v/siegel_integral.pdf Siegel's integral] | ||
− | * [http://www.math.ucla.edu/~hida/RT01F.pdf Siegel-Weil Formulas] | + | * Haruzo Hida, [http://www.math.ucla.edu/~hida/RT01F.pdf Siegel-Weil Formulas], 2007 |
2014년 6월 26일 (목) 01:52 판
개요
- $n\geq 2$ 자연수
- $L$ : 양의 정부호인 $n$ 차원 정수계수 이차형식
- $\rm{Aut}(L)$ : 자기동형군
- ${\rm gen}(L)$ : $L$과 같은 genus에 속하는 이차형식의 동치류
- $f$의 질량 $m(f)$를 다음과 같이 정의
$$ m(f):=\sum_{M\in {\rm gen}(L)}\frac{1}{|{\rm Aut}(M)|} $$
- 정리 (스미스-민코프스키-지겔)
다음이 성립한다 \[m(f) = 2\pi^{-n(n+1)/4}\prod_{j=1}^n\Gamma(j/2)\prod_{p\text{ prime}}2m_p(f)\] 여기서 \[m_p(f) = {p^{(rn(n-1)+s(n+1))/2}\over N(p^r)}\]
예
- n차원 even unimodular 격자의 경우의 질량 공식은 다음과 같이 표현된다
\[\sum_{\Lambda}{1\over|\operatorname{Aut}(\Lambda)|} = {|B_{n/2}|\over n}\prod_{1\le j< n/2}{|B_{2j}|\over 4j}\label{evenu} \]
여기서 $B_k$는 베르누이 수
8차원
- 8차원 even unimodular 격자는 E8격자 뿐이이며 질량 공식 \ref{evenu}의 우변은 다음과 같다
$$ \frac{1}{696729600} $$
- 696729600은 E8격자의 자기동형군의 크기이며, 바일군 $W(E_8)$의 크기이기도 하다
16차원
- 16차원에서 \ref{evenu}의 우변은 다음과 같다
$$\frac{691}{277667181515243520000}$$
메모
- the Siegel–Weil formula, introduced by Weil (1964, 1965) as an extension of the results of Siegel (1951, 1952), expresses an Eisenstein series as a weighted average of theta series of lattices in a genus, where the weights are proportional to the inverse of the order of the automorphism group of the lattice.
- For the constant terms this is essentially the Smith–Minkowski–Siegel mass formula.
- http://www2.math.ou.edu/~kmartin/ntii/
- Katsurada, Hidenori. "An explicit formula for the Fourier coefficients of Siegel-Eisenstein series of degree $3$." Nagoya Mathematical Journal 146 (1997): 199-223.
- Katsurada, Hidenori. "An explicit formula for Siegel series." American journal of mathematics (1999): 415-452.
매스매티카 파일 및 계산 리소스
- https://docs.google.com/file/d/0B8XXo8Tve1cxWGUybjFwNkw5dVE/edit
- http://math.berkeley.edu/~reb/papers/siegel/
사전 형태의 자료
- http://en.wikipedia.org/wiki/Smith–Minkowski–Siegel_mass_formula
- http://en.wikipedia.org/wiki/Siegel–Weil_formula
- http://en.wikipedia.org/wiki/Weil_conjecture_on_Tamagawa_numbers
리뷰, 에세이, 강의노트
- Proof of a simple case of the Siegel-Weil formula
- Siegel's integral
- Haruzo Hida, Siegel-Weil Formulas, 2007
관련논문
- Weil, André. “Sur la formule de Siegel dans la théorie des groupes classiques.” Acta Mathematica 113, no. 1 (July 1, 1965): 1–87. doi:10.1007/BF02391774.
- Weil, André. “Sur certains groupes d’opérateurs unitaires.” Acta Mathematica 111, no. 1 (July 1, 1964): 143–211. doi:10.1007/BF02391012.