"Spin(3)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(같은 사용자의 중간 판 하나는 보이지 않습니다) | |||
20번째 줄: | 20번째 줄: | ||
<math>SU (2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \}</math> | <math>SU (2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \}</math> | ||
− | * SU(2) 의 | + | * SU(2) 의 표현론 [http://math.berkeley.edu/%7Eteleman/math/RepThry.pdf http://math.berkeley.edu/~teleman/math/RepThry.pdf]<br> |
28번째 줄: | 28번째 줄: | ||
<h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">스핀</h5> | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">스핀</h5> | ||
− | * 양자역학적 시스템의 간단한 예<br> | + | * <br> 양자역학적 시스템의 간단한 예<br> |
− | * | + | * [[스핀과 파울리의 배타원리]] 항목 참조<br> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* 파울리 행렬 ([[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 참조)<br><math>\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} </math><br><math>\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} </math><br><math>\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br> | * 파울리 행렬 ([[해밀턴의 사원수(quarternions)|해밀턴의 사원수]] 참조)<br><math>\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} </math><br><math>\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} </math><br><math>\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br> | ||
* raising and lowering 연산자<br><math>\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})</math><br><math>\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math><br><math>\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math><br><math>[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}</math><br> | * raising and lowering 연산자<br><math>\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})</math><br><math>\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math><br><math>\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math><br><math>[\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}</math><br> |
2012년 6월 6일 (수) 01:30 판
이 항목의 수학노트 원문주소
개요
- 3차원 리 군(Lie group)의 하나
- SO(3) 의 double cover
- unitary unimodular group SU(2)와 동형
- 2차원 스피너 공간은 Spin(3)의 representation
정의
\(SU (2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \}\)
스핀
-
양자역학적 시스템의 간단한 예 - 스핀과 파울리의 배타원리 항목 참조
- 파울리 행렬 (해밀턴의 사원수 참조)
\(\sigma_1 = \sigma_x = \begin{pmatrix} 0&1\\ 1&0 \end{pmatrix} \)
\(\sigma_2 = \sigma_y = \begin{pmatrix} 0&-i\\ i&0 \end{pmatrix} \)
\(\sigma_3 = \sigma_z = \begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\) - raising and lowering 연산자
\(\sigma_{\pm}=\frac{1}{2}(\sigma_{x}\pm i\sigma_{y})\)
\(\sigma_{+}=\frac{1}{2}(\sigma_{x}+ i\sigma_{y})=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
\(\sigma_{-}=\frac{1}{2}(\sigma_{x}- i\sigma_{y})=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
\([\sigma_{z},\sigma_{\pm}]=\pm 2\sigma_{\pm}\)
sl(2)
- 3차원 리대수
\(E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
\(F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
\(H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\) - commutator
\([E,F]=H\)
\([H,E]=2E\)
\([H,F]=-2F\)
역사
메모
관련된 항목들
수학용어번역
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Special_unitary_group
- http://en.wikipedia.org/wiki/Spin_group
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문