"Spin(3)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
이 항목의 수학노트 원문주소==
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로) |
Pythagoras0 (토론 | 기여) 잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로) |
||
1번째 줄: | 1번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">이 항목의 수학노트 원문주소== |
5번째 줄: | 5번째 줄: | ||
− | ==개요 | + | ==개요== |
* Spin(3) - 3차원 리 군(Lie group)의 하나 | * Spin(3) - 3차원 리 군(Lie group)의 하나 | ||
16번째 줄: | 16번째 줄: | ||
− | ==정의 | + | ==정의== |
<math>SU (2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \}</math> | <math>SU (2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \}</math> | ||
28번째 줄: | 28번째 줄: | ||
− | <h5 style="line-height: 2em; margin: 0px;">sl(2) | + | <h5 style="line-height: 2em; margin: 0px;">sl(2)== |
* 3차원 리대수<br><math>E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math><br><math>F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math><br><math>H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br> | * 3차원 리대수<br><math>E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}</math><br><math>F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}</math><br><math>H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}</math><br> | ||
39번째 줄: | 39번째 줄: | ||
− | ==역사 | + | ==역사== |
50번째 줄: | 50번째 줄: | ||
− | ==메모 | + | ==메모== |
* http://www.dfcd.net/articles/fieldtheory/spin.pdf | * http://www.dfcd.net/articles/fieldtheory/spin.pdf | ||
59번째 줄: | 59번째 줄: | ||
− | ==관련된 항목들 | + | ==관련된 항목들== |
* [[클리포드 대수와 스피너]] | * [[클리포드 대수와 스피너]] | ||
67번째 줄: | 67번째 줄: | ||
− | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역 | + | <h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">수학용어번역== |
* 단어사전<br> | * 단어사전<br> | ||
85번째 줄: | 85번째 줄: | ||
− | ==사전 형태의 자료 | + | ==사전 형태의 자료== |
* http://ko.wikipedia.org/wiki/ | * http://ko.wikipedia.org/wiki/ | ||
98번째 줄: | 98번째 줄: | ||
− | ==리뷰논문, 에세이, 강의노트 | + | ==리뷰논문, 에세이, 강의노트== |
106번째 줄: | 106번째 줄: | ||
− | ==관련논문 | + | ==관련논문== |
* http://www.jstor.org/action/doBasicSearch?Query= | * http://www.jstor.org/action/doBasicSearch?Query= | ||
116번째 줄: | 116번째 줄: | ||
− | ==관련도서 | + | ==관련도서== |
* 도서내검색<br> | * 도서내검색<br> | ||
** http://books.google.com/books?q= | ** http://books.google.com/books?q= | ||
** http://book.daum.net/search/contentSearch.do?query= | ** http://book.daum.net/search/contentSearch.do?query= |
2012년 11월 1일 (목) 09:38 판
이 항목의 수학노트 원문주소==
개요
- Spin(3) - 3차원 리 군(Lie group)의 하나
- SO(3) 의 double cover
- unitary unimodular group SU(2)와 동형
- 2차원 스피너 공간은 Spin(3)의 representation
정의
\(SU (2) = \left \{ \begin{pmatrix} \alpha&-\overline{\beta}\\ \beta&\overline{\alpha} \end{pmatrix}: \ \ \alpha,\beta\in\mathbf{C}, |\alpha|^2 + |\beta|^2 = 1\right \}\)
sl(2)==
- 3차원 리대수
\(E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
\(F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
\(H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\)
- commutator
\([E,F]=H\)
\([H,E]=2E\)
\([H,F]=-2F\)
역사
메모
관련된 항목들
수학용어번역==
- 단어사전
- 발음사전 http://www.forvo.com/search/
- 대한수학회 수학 학술 용어집
- 한국통계학회 통계학 용어 온라인 대조표
- 남·북한수학용어비교
- 대한수학회 수학용어한글화 게시판
사전 형태의 자료
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Special_unitary_group
- http://en.wikipedia.org/wiki/Spin_group
- The Online Encyclopaedia of Mathematics
- NIST Digital Library of Mathematical Functions
- The World of Mathematical Equations
리뷰논문, 에세이, 강의노트
관련논문
관련도서
- 3차원 리대수
\(E=\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix}\)
\(F=\begin{pmatrix} 0&0\\ 1&0 \end{pmatrix}\)
\(H=\begin{pmatrix} 1&0\\ 0&-1 \end{pmatrix}\) - commutator
\([E,F]=H\)
\([H,E]=2E\)
\([H,F]=-2F\)
역사
메모
관련된 항목들