"코쉬 행렬과 행렬식"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* 행렬 $A=(a_{i,j})_{1\le i,j\le n}$를 크기 n인 코쉬 행렬이라 함. 여기서
+
* 행렬 $A=({\frac{1}{x_i-y_j}})_{1\le i,j\le n}$를 크기 n인 코쉬 행렬이라 함
:<math>a_{ij}={\frac{1}{x_i-y_j}}</math>
+
* 행렬식
* 행렬식의 계산
+
$$
 +
\det \left(\frac{1}{x _i-y _j}\right) _{1\le i,j \le n}=(-1)^{\binom{n}{2}}\frac{\prod _{1\le i < j\le n} (x_j-x _i)(y _j-y _i)}{\prod _{i,j=1}^n (x _i-y _j)}
 +
$$
 +
$$
 +
\det \left(\frac{1}{x _i+y _j}\right) _{1\le i,j \le n}=\frac{\prod _{1\le i < j\le n} (x_j-x _i)(y _j-y _i)}{\prod _{i,j=1}^n (x _i+y _j)}
 +
$$
  
  
12번째 줄: 17번째 줄:
  
 
===n=2인 경우===
 
===n=2인 경우===
* <math>\left( \begin{array}{cc}  \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} \\  \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} \end{array} \right)</math>
+
* 코쉬 행렬
 
+
:<math>\left( \begin{array}{cc}  \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} \\  \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} \end{array} \right)</math>
 
+
* 행렬식
 +
$$
 +
\frac{\left(x_1-x_2\right) \left(y_1-y_2\right)}{\left(x_1-y_1\right) \left(y_1-x_2\right) \left(x_1-y_2\right) \left(x_2-y_2\right)}
 +
$$
  
 
===n=3인 경우===
 
===n=3인 경우===
38번째 줄: 46번째 줄:
  
 
==메모==
 
==메모==
 
+
* http://mathoverflow.net/questions/20609/what-role-does-cauchys-determinant-identity-play-in-combinatorics
 
 
  
 
 
 
 
  
 
==관련된 항목들==
 
==관련된 항목들==
 
+
* [[반데몬드 행렬과 행렬식 (Vandermonde matrix)]]
 
* [[힐버트 행렬]]
 
* [[힐버트 행렬]]
 
 
 
 
  
 
 
 
 
 
  
 
==매스매티카 파일 및 계산 리소스==
 
==매스매티카 파일 및 계산 리소스==
  
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxM2E1ODYzMGUtYTJhMi00MmYxLWEzZDMtZDI2NmZmMWZmMDdm&sort=name&layout=list&num=50
 
* https://docs.google.com/leaf?id=0B8XXo8Tve1cxM2E1ODYzMGUtYTJhMi00MmYxLWEzZDMtZDI2NmZmMWZmMDdm&sort=name&layout=list&num=50
* [[매스매티카 파일 목록]]
 
  
 
 
  
 
 
 
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==
 
* http://en.wikipedia.org/wiki/Cauchy_matrix
 
* http://en.wikipedia.org/wiki/Cauchy_matrix
 +
 +
 +
==관련논문==
 +
* Ishikawa, Masao, Soichi Okada, Hiroyuki Tagawa, and Jiang Zeng. “Generalizations of Cauchy’s Determinant and Schur’s Pfaffian.” Advances in Applied Mathematics 36, no. 3 (2006): 251–87. doi:10.1016/j.aam.2005.07.001.
  
  
 
[[분류:선형대수학]]
 
[[분류:선형대수학]]

2014년 9월 19일 (금) 02:05 판

개요

  • 행렬 $A=({\frac{1}{x_i-y_j}})_{1\le i,j\le n}$를 크기 n인 코쉬 행렬이라 함
  • 행렬식

$$ \det \left(\frac{1}{x _i-y _j}\right) _{1\le i,j \le n}=(-1)^{\binom{n}{2}}\frac{\prod _{1\le i < j\le n} (x_j-x _i)(y _j-y _i)}{\prod _{i,j=1}^n (x _i-y _j)} $$ $$ \det \left(\frac{1}{x _i+y _j}\right) _{1\le i,j \le n}=\frac{\prod _{1\le i < j\le n} (x_j-x _i)(y _j-y _i)}{\prod _{i,j=1}^n (x _i+y _j)} $$


n=1인 경우

  • \(\left( \begin{array}{c} \frac{1}{x_1-y_1} \end{array} \right)\)


n=2인 경우

  • 코쉬 행렬

\[\left( \begin{array}{cc} \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} \\ \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} \end{array} \right)\]

  • 행렬식

$$ \frac{\left(x_1-x_2\right) \left(y_1-y_2\right)}{\left(x_1-y_1\right) \left(y_1-x_2\right) \left(x_1-y_2\right) \left(x_2-y_2\right)} $$

n=3인 경우

  • 코쉬 행렬은

\[\left( \begin{array}{ccc} \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} & \frac{1}{x_1-y_3} \\ \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} & \frac{1}{x_2-y_3} \\ \frac{1}{x_3-y_1} & \frac{1}{x_3-y_2} & \frac{1}{x_3-y_3} \end{array} \right)\]

  • 행렬식은

\[-\frac{\left(-x_1+x_2\right) \left(-x_1+x_3\right) \left(-x_2+x_3\right) \left(y_1-y_2\right) \left(y_1-y_3\right) \left(y_2-y_3\right)}{\left(x_3-y_1\right) \left(-x_1+y_1\right) \left(-x_2+y_1\right) \left(x_2-y_2\right) \left(x_3-y_2\right) \left(-x_1+y_2\right) \left(x_1-y_3\right) \left(x_2-y_3\right) \left(x_3-y_3\right)}\]

 

n=4인 경우

  • 코쉬 행렬은

\[\left( \begin{array}{cccc} \frac{1}{x_1-y_1} & \frac{1}{x_1-y_2} & \frac{1}{x_1-y_3} & \frac{1}{x_1-y_4} \\ \frac{1}{x_2-y_1} & \frac{1}{x_2-y_2} & \frac{1}{x_2-y_3} & \frac{1}{x_2-y_4} \\ \frac{1}{x_3-y_1} & \frac{1}{x_3-y_2} & \frac{1}{x_3-y_3} & \frac{1}{x_3-y_4} \\ \frac{1}{x_4-y_1} & \frac{1}{x_4-y_2} & \frac{1}{x_4-y_3} & \frac{1}{x_4-y_4} \end{array} \right)\]

 


역사

 

 

메모

 

관련된 항목들

 


매스매티카 파일 및 계산 리소스


사전 형태의 자료


관련논문

  • Ishikawa, Masao, Soichi Okada, Hiroyuki Tagawa, and Jiang Zeng. “Generalizations of Cauchy’s Determinant and Schur’s Pfaffian.” Advances in Applied Mathematics 36, no. 3 (2006): 251–87. doi:10.1016/j.aam.2005.07.001.