"홀-리틀우드(Hall-Littlewood) 대칭함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==introduction==
 
==introduction==
 
* spherical Macdonald functions
 
* spherical Macdonald functions
 +
 +
 +
==expositions==
 +
* Macdonald, I. G. 1992. “Schur Functions: Theme and Variations.” In Séminaire Lotharingien de Combinatoire (Saint-Nabor, 1992), 498:5–39. Publ. Inst. Rech. Math. Av. Strasbourg: Univ. Louis Pasteur. http://www.ams.org/mathscinet-getitem?mr=1308728. http://emis.u-strasbg.fr/journals/SLC/opapers/s28macdonald.pdf
 +
  
  

2014년 9월 18일 (목) 01:54 판

introduction

  • spherical Macdonald functions


expositions


articles

  • Venkateswaran, Vidya. 2014. “A P-Adic Interpretation of Some Integral Identities for Hall-Littlewood Polynomials.” arXiv:1407.3755 [math], July. http://arxiv.org/abs/1407.3755.
  • Frechette, Claire, and Madeline Locus. 2014. “Combinatorial Properties of Rogers-Ramanujan-Type Identities Arising from Hall-Littlewood Polynomials.” arXiv:1407.2880 [math], July. http://arxiv.org/abs/1407.2880.
  • Griffin, Michael J., Ken Ono, and S. Ole Warnaar. 2014. “A Framework of Rogers-Ramanujan Identities and Their Arithmetic Properties.” arXiv:1401.7718 [math], January. http://arxiv.org/abs/1401.7718.
  • Lenart, Cristian. “Hall-Littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams.” Discrete Mathematics 311, no. 4 (2011): 258–75. doi:10.1016/j.disc.2010.11.010.
  • Warnaar, S. Ole. 2007. “Rogers-Szego Polynomials and Hall-Littlewood Symmetric Functions.” arXiv:0708.3110 [math], August. http://arxiv.org/abs/0708.3110.
  • Warnaar, S. Ole. “Hall-Littlewood Functions and the $A_2$ Rogers-Ramanujan Identities.” Advances in Mathematics 200, no. 2 (2006): 403–34. doi:10.1016/j.aim.2004.12.001.
  • Jouhet, Frédéric, and Jiang Zeng. “New Identities for Hall-Littlewood Polynomials and Applications.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 10, no. 1 (2005): 89–112. doi:10.1007/s11139-005-3508-3.
  • Andrews, George E., Anne Schilling, and S. Ole Warnaar. “An $A_2$ Bailey Lemma and Rogers-Ramanujan-Type Identities.” Journal of the American Mathematical Society 12, no. 3 (1999): 677–702. doi:10.1090/S0894-0347-99-00297-0.
  • Stembridge, John R. “Hall-Littlewood Functions, Plane Partitions, and the Rogers-Ramanujan Identities.” Transactions of the American Mathematical Society 319, no. 2 (1990): 469–98. doi:10.2307/2001250.