"코스트카 다항식 (Kostka polynomial)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
26번째 줄: 26번째 줄:
 
* They proved this by showing that $K_{\lambda,\mu}(q)=\sum q^{c(T)}$, where $T$ varies over all semi-standard tableaux of shape $\lambda$ and weight $\mu$ and $c(T)$ is an integer-valued function, called the charge of the tableau $T$, which is still a mysterious object in combinatorics.
 
* They proved this by showing that $K_{\lambda,\mu}(q)=\sum q^{c(T)}$, where $T$ varies over all semi-standard tableaux of shape $\lambda$ and weight $\mu$ and $c(T)$ is an integer-valued function, called the charge of the tableau $T$, which is still a mysterious object in combinatorics.
  
 +
 +
 +
==테이블==
 +
* $n\geq d$를 가정하면, 코스트카 다항식 $K_{\lambda,\mu}(\mathbb{x})$는 $n$에 의존하지 않고, $d$에만 의존
 +
 +
 +
===$d=1$===
 +
\begin{array}{c|c}
 +
\text{} & \{1\} \\
 +
\hline
 +
\{1\} & 1 \\
 +
\end{array}
 +
 +
===$d=2$===
 +
\begin{array}{c|cc}
 +
\text{} & \{2\} & \{1,1\} \\
 +
\hline
 +
\{2\} & 1 & q \\
 +
\{1,1\} & 0 & 1 \\
 +
\end{array}
 +
 +
===$d=3$===
 +
\begin{array}{c|ccc}
 +
\text{} & \{3\} & \{2,1\} & \{1,1,1\} \\
 +
\hline
 +
\{3\} & 1 & q & q^3 \\
 +
\{2,1\} & 0 & 1 & q^2+q \\
 +
\{1,1,1\} & 0 & 0 & 1 \\
 +
\end{array}
 +
 +
 +
===$d=4$===
 +
\begin{array}{c|cccc}
 +
\text{} & \{4\} & \{3,1\} & \{2,2\} & \{2,1,1\} & \{1,1,1,1\} \\
 +
\hline
 +
\{4\} & 1 & q & q^2 & q^3 & q^6 \\
 +
\{3,1\} & 0 & 1 & q & q^2+q & q^5+q^4+q^3 \\
 +
\{2,2\} & 0 & 0 & 1 & q & q^4+q^2 \\
 +
\{2,1,1\} & 0 & 0 & 0 & 1 & q^3+q^2+q \\
 +
\{1,1,1,1\} & 0 & 0 & 0 & 0 & 1 \\
 +
\end{array}
 +
 +
 +
===$d=5$===
 +
\begin{array}{c|ccccccc}
 +
\text{} & \{5\} & \{4,1\} & \{3,2\} & \{3,1,1\} & \{2,2,1\} & \{2,1,1,1\} & \{1,1,1,1,1\} \\
 +
\hline
 +
\{5\} & 1 & q & q^2 & q^3 & q^4 & q^6 & q^{10} \\
 +
\{4,1\} & 0 & 1 & q & q^2+q & q^3+q^2 & q^5+q^4+q^3 & q^9+q^8+q^7+q^6 \\
 +
\{3,2\} & 0 & 0 & 1 & q & q^2+q & q^4+q^3+q^2 & q^8+q^7+q^6+q^5+q^4 \\
 +
\{3,1,1\} & 0 & 0 & 0 & 1 & q & q^3+q^2+q & q^7+q^6+2 q^5+q^4+q^3 \\
 +
\{2,2,1\} & 0 & 0 & 0 & 0 & 1 & q^2+q & q^6+q^5+q^4+q^3+q^2 \\
 +
\{2,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 1 & q^4+q^3+q^2+q \\
 +
\{1,1,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
 +
\end{array}
  
  
 
==관련된 항목들==
 
==관련된 항목들==
 +
* [[코스트카 수 (Kostka number)]]
 +
* [[홀-리틀우드(Hall-Littlewood) 대칭함수]]
  
  

2015년 4월 1일 (수) 00:12 판

개요

  • 코스트카 수 (Kostka number)의 q-버전
  • 갈고리 공식
  • 라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식
  • 대수적 조합수학의 중요한 연구대상


코스트카 수

$$s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}m_\mu(\mathbb{x})$$


코스트카 다항식

$$ s_\lambda(\mathbb{x})= \sum_\mu K_{\lambda\mu}(q)P_\mu(\mathbb{x};q) $$

  • $K_{\lambda\mu}(1)=K_{\lambda\mu}$이 성립


라스꾸-슈첸베르제 (Lascoux-Schützenberger) 공식

  • 1978년에 라스꾸와 슈첸베르제는 $K_{\lambda,\mu}(q)$가 음이 아닌 정수 계수 다항식임을 증명
  • They proved this by showing that $K_{\lambda,\mu}(q)=\sum q^{c(T)}$, where $T$ varies over all semi-standard tableaux of shape $\lambda$ and weight $\mu$ and $c(T)$ is an integer-valued function, called the charge of the tableau $T$, which is still a mysterious object in combinatorics.


테이블

  • $n\geq d$를 가정하면, 코스트카 다항식 $K_{\lambda,\mu}(\mathbb{x})$는 $n$에 의존하지 않고, $d$에만 의존


$d=1$

\begin{array}{c|c} \text{} & \{1\} \\ \hline \{1\} & 1 \\ \end{array}

$d=2$

\begin{array}{c|cc} \text{} & \{2\} & \{1,1\} \\ \hline \{2\} & 1 & q \\ \{1,1\} & 0 & 1 \\ \end{array}

$d=3$

\begin{array}{c|ccc} \text{} & \{3\} & \{2,1\} & \{1,1,1\} \\ \hline \{3\} & 1 & q & q^3 \\ \{2,1\} & 0 & 1 & q^2+q \\ \{1,1,1\} & 0 & 0 & 1 \\ \end{array}


$d=4$

\begin{array}{c|cccc} \text{} & \{4\} & \{3,1\} & \{2,2\} & \{2,1,1\} & \{1,1,1,1\} \\ \hline \{4\} & 1 & q & q^2 & q^3 & q^6 \\ \{3,1\} & 0 & 1 & q & q^2+q & q^5+q^4+q^3 \\ \{2,2\} & 0 & 0 & 1 & q & q^4+q^2 \\ \{2,1,1\} & 0 & 0 & 0 & 1 & q^3+q^2+q \\ \{1,1,1,1\} & 0 & 0 & 0 & 0 & 1 \\ \end{array}


$d=5$

\begin{array}{c|ccccccc} \text{} & \{5\} & \{4,1\} & \{3,2\} & \{3,1,1\} & \{2,2,1\} & \{2,1,1,1\} & \{1,1,1,1,1\} \\ \hline \{5\} & 1 & q & q^2 & q^3 & q^4 & q^6 & q^{10} \\ \{4,1\} & 0 & 1 & q & q^2+q & q^3+q^2 & q^5+q^4+q^3 & q^9+q^8+q^7+q^6 \\ \{3,2\} & 0 & 0 & 1 & q & q^2+q & q^4+q^3+q^2 & q^8+q^7+q^6+q^5+q^4 \\ \{3,1,1\} & 0 & 0 & 0 & 1 & q & q^3+q^2+q & q^7+q^6+2 q^5+q^4+q^3 \\ \{2,2,1\} & 0 & 0 & 0 & 0 & 1 & q^2+q & q^6+q^5+q^4+q^3+q^2 \\ \{2,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 1 & q^4+q^3+q^2+q \\ \{1,1,1,1,1\} & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array}


관련된 항목들


리뷰, 에세이, 강의노트


관련논문

  • Takeyama, Yoshihiro. “A Deformation of Affine Hecke Algebra and Integrable Stochastic Particle System.” arXiv:1407.1960 [cond-Mat, Physics:math-Ph], July 8, 2014. http://arxiv.org/abs/1407.1960.
  • Okado, Masato, Anne Schilling, and Mark Shimozono. “A Crystal to Rigged Configuration Bijection for Nonexceptional Affine Algebras.” arXiv:math/0203163, March 15, 2002. http://arxiv.org/abs/math/0203163.
  • Schilling, Anne, and Mark Shimozono. 2001. “Fermionic Formulas for Level-Restricted Generalized Kostka Polynomials and Coset Branching Functions.” Communications in Mathematical Physics 220 (1): 105–164. doi:10.1007/s002200100443.
  • Kirillov, Anatol N., Anne Schilling, and Mark Shimozono. 1999. “Various Representations of the Generalized Kostka Polynomials.” Séminaire Lotharingien de Combinatoire 42: Art. B42j, 19 pp. (electronic). http://www.emis.de/journals/SLC/wpapers/s42schil.pdf
  • Feigin, B., and S. Loktev. 1999. “On Generalized Kostka Polynomials and the Quantum Verlinde Rule.” In Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, 194:61–79. Amer. Math. Soc. Transl. Ser. 2. Providence, RI: Amer. Math. Soc.
  • Kirillov, A. N. 1988. “On the Kostka-Green-Foulkes Polynomials and Clebsch-Gordan Numbers.” Journal of Geometry and Physics 5 (3): 365–389. doi:10.1016/0393-0440(88)90030-7.
  • Nakayashiki, Atsushi, and Yasuhiko Yamada. 1997. “Kostka Polynomials and Energy Functions in Solvable Lattice Models.” Selecta Mathematica. New Series 3 (4): 547–599. doi:10.1007/s000290050020.
  • Lascoux, Alain, and Marcel-Paul Schützenberger. 1978. “Sur Une Conjecture de H. O. Foulkes.” C. R. Acad. Sci. Paris Sér. A-B 286 (7): A323–A324.