"후르비츠 수 (Hurwitz number)"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (Pythagoras0 사용자가 베르누이-후르비츠 수 문서를 후르비츠 수 (Hurwitz number) 문서로 옮겼습니다.)
(차이 없음)

2015년 4월 8일 (수) 05:40 판

개요

$K=Q(\sqrt{-1})$의 예

  • 다음이 성립한다

$$ \sum_{ (m,n)\in \mathbb{Z}^2\backslash\{(0,0)\}} \frac{1}{(mi+n)^{4s}}=G_{4s}\omega^{4s},\,s=1,2,\cdots $$ 여기서 $G_{s}$는 다음과 같은 상수 $$ \begin{array}{c|cccccccc} s & 4 & 8 & 12 & 16 & 20 & 24 & 28 & 32 \\ \hline G_s & \frac{1}{15} & \frac{1}{525} & \frac{2}{53625} & \frac{1}{1243125} & \frac{2}{118096875} & \frac{2}{5575415625} & \frac{4}{527240390625} & \frac{223}{1389278429296875} \\ \end{array} $$


관련논문

  • Bannai, Kenichi, and Shinichi Kobayashi. “Integral Structures on $p$-Adic Fourier Theory.” arXiv:0804.4338 [math], April 28, 2008. http://arxiv.org/abs/0804.4338.
  • Katz, Nicholas M. “The Congruences of Clausen — von Staudt and Kummer for Bernoulli-Hurwitz Numbers.” Mathematische Annalen 216, no. 1 (July 1, 1975): 1–4. doi:10.1007/BF02547966.