"수소 원자의 스펙트럼"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) (새 문서: ==역사== * 1904년 톰슨 모형 * 1913 스타크의 관찰 ** http://en.wikipedia.org/wiki/Stark_effect * 1913 보어 수소 원자 모형 : 수소 원자 주위 전자의 각운...) |
Pythagoras0 (토론 | 기여) |
||
20번째 줄: | 20번째 줄: | ||
* Nanni, Luca. “The Hydrogen Atom: A Review on the Birth of Modern Quantum Mechanics.” arXiv:1501.05894 [physics, Physics:quant-Ph], January 22, 2015. http://arxiv.org/abs/1501.05894. | * Nanni, Luca. “The Hydrogen Atom: A Review on the Birth of Modern Quantum Mechanics.” arXiv:1501.05894 [physics, Physics:quant-Ph], January 22, 2015. http://arxiv.org/abs/1501.05894. | ||
* Felix Nendzig, 2013. [http://www.thphys.uni-heidelberg.de/~brezinsk/data/Hydrogenatom.pdf The Quantum Theory of the Hydrogen Atom], | * Felix Nendzig, 2013. [http://www.thphys.uni-heidelberg.de/~brezinsk/data/Hydrogenatom.pdf The Quantum Theory of the Hydrogen Atom], | ||
+ | * [http://math.umn.edu/~karl0163/docs/fock.pdf Fock's article on the SO(4) symmetry of the hydrogen atom] | ||
* Mawhin, Jean, and André Ronveaux. 2010. “Schrödinger and Dirac Equations for the Hydrogen Atom, and Laguerre Polynomials.” Archive for History of Exact Sciences 64 (4): 429–460. doi:10.1007/s00407-010-0060-3. | * Mawhin, Jean, and André Ronveaux. 2010. “Schrödinger and Dirac Equations for the Hydrogen Atom, and Laguerre Polynomials.” Archive for History of Exact Sciences 64 (4): 429–460. doi:10.1007/s00407-010-0060-3. | ||
* Robert Gilmore, [http://www.physics.drexel.edu/~bob/PHYS516_11/Frobenius.pdf The Hydrogen Atom], 4pages | * Robert Gilmore, [http://www.physics.drexel.edu/~bob/PHYS516_11/Frobenius.pdf The Hydrogen Atom], 4pages | ||
25번째 줄: | 26번째 줄: | ||
* http://www.eng.fsu.edu/~dommelen/quantum/style_a/hyd.html#SECTION07331000000000000000 | * http://www.eng.fsu.edu/~dommelen/quantum/style_a/hyd.html#SECTION07331000000000000000 | ||
* http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html#c3 | * http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html#c3 | ||
− | |||
==관련논문== | ==관련논문== |
2015년 4월 25일 (토) 06:18 판
역사
- 1904년 톰슨 모형
- 1913 스타크의 관찰
- 1913 보어 수소 원자 모형 : 수소 원자 주위 전자의 각운동량이 양자화되어 있다는 가설
- 수학사 연표
메모
- 보어모델 http://www.chemteam.info/Chem-History/Bohr/Bohr-1913a.html
- Rydberg was the first to distinguish between a sharp series (S) and a diffuse series (D). Other types of series were later discovered: the so-called principal series (P) and the fundamental series (F). Jointly they form the four chief series (S, P, D, F) available for every type of line (i.e. singlet, doublet, triplet, . . . ). (MICHELA MASSIMI Pauli's Exclusion Principle: The Origin and Validation of a Scientific Principle)
리뷰, 에세이, 강의노트
- Nanni, Luca. “The Hydrogen Atom: A Review on the Birth of Modern Quantum Mechanics.” arXiv:1501.05894 [physics, Physics:quant-Ph], January 22, 2015. http://arxiv.org/abs/1501.05894.
- Felix Nendzig, 2013. The Quantum Theory of the Hydrogen Atom,
- Fock's article on the SO(4) symmetry of the hydrogen atom
- Mawhin, Jean, and André Ronveaux. 2010. “Schrödinger and Dirac Equations for the Hydrogen Atom, and Laguerre Polynomials.” Archive for History of Exact Sciences 64 (4): 429–460. doi:10.1007/s00407-010-0060-3.
- Robert Gilmore, The Hydrogen Atom, 4pages
- The Hydrogen Atom
- http://www.eng.fsu.edu/~dommelen/quantum/style_a/hyd.html#SECTION07331000000000000000
- http://hyperphysics.phy-astr.gsu.edu/hbase/hyde.html#c3
관련논문
- Al-Hashimi, M. H., A. M. Shalaby, and U.-J. Wiese. ‘Fate of Accidental Symmetries of the Relativistic Hydrogen Atom in a Spherical Cavity’. arXiv:1504.04269 [hep-Th, Physics:math-Ph, Physics:quant-Ph], 16 April 2015. http://arxiv.org/abs/1504.04269.
- Castro, P. G., and R. Kullock. ‘On the Physics of the $so_q(4)$ Hydrogen Atom’. arXiv:1211.6578 [math-Ph, Physics:quant-Ph], 28 November 2012. http://arxiv.org/abs/1211.6578.
- Stodolna, A. S., A. Rouzée, F. Lépine, S. Cohen, F. Robicheaux, A. Gijsbertsen, J. H. Jungmann, C. Bordas, and M. J. J. Vrakking. ‘Hydrogen Atoms under Magnification: Direct Observation of the Nodal Structure of Stark States’. Physical Review Letters 110, no. 21 (20 May 2013): 213001. doi:10.1103/PhysRevLett.110.213001.