"나스랄라-라만 적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* 애스키-윌슨 적분의 확장
+
;정리 (나스랄라-라만 Nassrallah-Rahman)
* 나스랄라-라만 적분 (Nassrallah-Rahman trigonometric beta integral)
+
복소수 $t_1, \dots ,t_5,q$가 $|t_1|, \dots , |t_5|,|q| <1$을 만족한다고 하자. 다음이 성립한다.
 
\begin{equation}\label{NR}
 
\begin{equation}\label{NR}
 
\frac{(q,q)_\infty}{2} \int_{\mathbb{T}}\frac{(z \prod_{i=1}^5 t_i,q)_\infty (z^{-1} \prod_{i=1}^5 t_i,q)_\infty (z^2,q)_\infty (z^{-2},q)_\infty}{\prod_{i=1}^5 (t_i z)_\infty (t_i z^{-1})_\infty} \frac{dz}{2\pi i z} \ = \ \frac{\prod_{j=1}^5 (\frac{t_1 t_2 t_3 t_4 t_5}{t_j},q)_\infty}{\prod_{1 \leq i < j \leq 5} (t_i t_j,q)_\infty}
 
\frac{(q,q)_\infty}{2} \int_{\mathbb{T}}\frac{(z \prod_{i=1}^5 t_i,q)_\infty (z^{-1} \prod_{i=1}^5 t_i,q)_\infty (z^2,q)_\infty (z^{-2},q)_\infty}{\prod_{i=1}^5 (t_i z)_\infty (t_i z^{-1})_\infty} \frac{dz}{2\pi i z} \ = \ \frac{\prod_{j=1}^5 (\frac{t_1 t_2 t_3 t_4 t_5}{t_j},q)_\infty}{\prod_{1 \leq i < j \leq 5} (t_i t_j,q)_\infty}
 
\end{equation}
 
\end{equation}
 +
* 나스랄라-라만 삼각 베타 적분 (Nassrallah-Rahman trigonometric beta integral)으로 불린다
 +
* $t_1\to 0$일 때, 애스키-윌슨 적분을 얻는다
  
  
 
==확장==
 
==확장==
 
;정리 (Spiridonov).  
 
;정리 (Spiridonov).  
Let $t_1, \dots ,t_6,p,q \in {\mathbb{C}}$ with $|t_1|, \dots , |t_6|,|p|,|q| <1$. Then
+
복소수 $t_1, \dots ,t_6,p,q$$|t_1|, \dots , |t_6|,|p|,|q| <1$이고, $\prod_{i=1}^6 t_i=pq$을 만족한다고 하자. 다음이 성립한다.
 
\begin{equation} \label{betaint}
 
\begin{equation} \label{betaint}
 
\frac{(p;p)_\infty (q;q)_\infty}{2} \int_{\mathbb{T}} \frac{\prod_{i=1}^6 \Gamma(t_i z ;p,q)\Gamma(t_i z^{-1} ;p,q)}{\Gamma(z^{2};p,q) \Gamma(z^{-2};p,q)} \frac{dz}{2 \pi i z} = \prod_{1 \leq i < j \leq 6} \Gamma(t_i t_j;p,q),
 
\frac{(p;p)_\infty (q;q)_\infty}{2} \int_{\mathbb{T}} \frac{\prod_{i=1}^6 \Gamma(t_i z ;p,q)\Gamma(t_i z^{-1} ;p,q)}{\Gamma(z^{2};p,q) \Gamma(z^{-2};p,q)} \frac{dz}{2 \pi i z} = \prod_{1 \leq i < j \leq 6} \Gamma(t_i t_j;p,q),
 
\end{equation}
 
\end{equation}
where the unit circle $\mathbb{T}$ is taken in the positive orientation and we imposed the balancing condition $\prod_{i=1}^6 t_i=pq$.
+
where the unit circle $\mathbb{T}$ is taken in the positive orientation
 
* $p \rightarrow 0$일 때, \ref{NR}을 얻는다
 
* $p \rightarrow 0$일 때, \ref{NR}을 얻는다
  
20번째 줄: 22번째 줄:
 
* observed by Rahman in \cite{Rahman2} as a special case of the integral found in \cite{Nasrallah}
 
* observed by Rahman in \cite{Rahman2} as a special case of the integral found in \cite{Nasrallah}
 
   
 
   
 +
 +
==리뷰, 에세이, 강의노트==
 +
* Gahramanov, Ilmar. “Mathematical Structures behind Supersymmetric Dualities.” arXiv:1505.05656 [hep-Th, Physics:math-Ph], May 21, 2015. http://arxiv.org/abs/1505.05656.
  
  

2015년 8월 10일 (월) 20:18 판

개요

정리 (나스랄라-라만 Nassrallah-Rahman)

복소수 $t_1, \dots ,t_5,q$가 $|t_1|, \dots , |t_5|,|q| <1$을 만족한다고 하자. 다음이 성립한다. \begin{equation}\label{NR} \frac{(q,q)_\infty}{2} \int_{\mathbb{T}}\frac{(z \prod_{i=1}^5 t_i,q)_\infty (z^{-1} \prod_{i=1}^5 t_i,q)_\infty (z^2,q)_\infty (z^{-2},q)_\infty}{\prod_{i=1}^5 (t_i z)_\infty (t_i z^{-1})_\infty} \frac{dz}{2\pi i z} \ = \ \frac{\prod_{j=1}^5 (\frac{t_1 t_2 t_3 t_4 t_5}{t_j},q)_\infty}{\prod_{1 \leq i < j \leq 5} (t_i t_j,q)_\infty} \end{equation}

  • 나스랄라-라만 삼각 베타 적분 (Nassrallah-Rahman trigonometric beta integral)으로 불린다
  • $t_1\to 0$일 때, 애스키-윌슨 적분을 얻는다


확장

정리 (Spiridonov).

복소수 $t_1, \dots ,t_6,p,q$가 $|t_1|, \dots , |t_6|,|p|,|q| <1$이고, $\prod_{i=1}^6 t_i=pq$을 만족한다고 하자. 다음이 성립한다. \begin{equation} \label{betaint} \frac{(p;p)_\infty (q;q)_\infty}{2} \int_{\mathbb{T}} \frac{\prod_{i=1}^6 \Gamma(t_i z ;p,q)\Gamma(t_i z^{-1} ;p,q)}{\Gamma(z^{2};p,q) \Gamma(z^{-2};p,q)} \frac{dz}{2 \pi i z} = \prod_{1 \leq i < j \leq 6} \Gamma(t_i t_j;p,q), \end{equation} where the unit circle $\mathbb{T}$ is taken in the positive orientation

  • $p \rightarrow 0$일 때, \ref{NR}을 얻는다


메모

  • observed by Rahman in \cite{Rahman2} as a special case of the integral found in \cite{Nasrallah}


리뷰, 에세이, 강의노트

  • Gahramanov, Ilmar. “Mathematical Structures behind Supersymmetric Dualities.” arXiv:1505.05656 [hep-Th, Physics:math-Ph], May 21, 2015. http://arxiv.org/abs/1505.05656.


관련논문

  • Nassrallah, B., and M. Rahman. “Projection Formulas, a Reproducing Kernel and a Generating Function for Q-Wilson Polynomials.” SIAM Journal on Mathematical Analysis 16, no. 1 (January 1, 1985): 186–97. doi:10.1137/0516014.
  • Askey, Richard, and James Arthur Wilson. Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials. Vol. 319. American Mathematical Soc., 1985.