"멜린-반스 적분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
7번째 줄: 7번째 줄:
  
 
$$
 
$$
\left(\frac{\sin x}{x}\right)^2=-\frac{\sqrt{\pi}}{4}\frac{1}{2\pi i}\int_{\delta-i\infty}^{\delta+i\infty}\frac{\Gamma(\frac{z}{2}-1)}{\Gamma(\frac{3}{2}-\frac{z}{2})}x^{-z}\, dz,\, q\quad 0<\delta<2
+
\left(\frac{\sin x}{x}\right)^2=-\frac{\sqrt{\pi}}{4}\frac{1}{2\pi i}\int_{\delta-i\infty}^{\delta+i\infty}\frac{\Gamma(\frac{z}{2}-1)}{\Gamma(\frac{3}{2}-\frac{z}{2})}x^{-z}\, dz,\, \quad 0<\delta<2
 
$$
 
$$
 
 
  
 
==사전 형태의 자료==
 
==사전 형태의 자료==

2015년 11월 27일 (금) 01:32 판

개요

  • 감마함수의 곱을 적분
  • 함수의 점근급수전개에 유용한 도구


$$ \left(\frac{\sin x}{x}\right)^2=-\frac{\sqrt{\pi}}{4}\frac{1}{2\pi i}\int_{\delta-i\infty}^{\delta+i\infty}\frac{\Gamma(\frac{z}{2}-1)}{\Gamma(\frac{3}{2}-\frac{z}{2})}x^{-z}\, dz,\, \quad 0<\delta<2 $$

사전 형태의 자료


리뷰, 에세이, 강의노트

  • Elizalde, E., K. Kirsten, and S. Zerbini. “Applications of the Mellin-Barnes Integral Representation.” Journal of Physics A: Mathematical and General 28, no. 3 (February 7, 1995): 617–29. doi:10.1088/0305-4470/28/3/016.
  • http://www2.math.umd.edu/~punshs/Mellin-Barnes.pdf