"쌍곡 콕세터 군"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 14개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==참고할만한 자료==
+
==관련된 항목들==
 +
* [[쌍곡 정십이면체]]
 +
* [[쌍곡 정육면체]]
  
* http://www.zentralblatt-math.org/zmath/en/
 
* [http://www.iop.org/EJ/abstract/0036-0279/40/1/R02 Hyperbolic reflection groups.]<br>
 
** E B Vinberg 1985 Russ. Math. Surv. 40 31-75 doi: 10.1070/RM1985v040n01ABEH003527
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://viswiki.com/en/
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 
  
 
+
==리뷰, 에세이, 강의노트==
 +
* Belolipetsky, Mikhail. “Arithmetic Hyperbolic Reflection Groups.” arXiv:1506.03111 [math], June 9, 2015. http://arxiv.org/abs/1506.03111.
 +
* Hester Pieters, [http://www.math.ru.nl/~heckman/HP.MasterThesis.pdf Hyperbolic Reflection Groups and the Leech Lattice]
 +
* Vinberg, E. B. ‘Hyperbolic Reflection Groups’. Russian Mathematical Surveys 40, no. 1 (28 February 1985): 31. doi:[http://dx.doi.org/10.1070/RM1985v040n01ABEH003527 10.1070/RM1985v040n01ABEH003527]
  
 
+
==관련논문==
 
+
* http://arxiv.org/abs/1512.01133
==이미지 검색==
+
* Kellerhals, Ruth, and Genevieve Perren. ‘On the Growth of Cocompact Hyperbolic Coxeter Groups’. arXiv:0910.4103 [math], 21 October 2009. http://arxiv.org/abs/0910.4103.
 
+
* Komori, Yohei, and Tomoshige Yukita. ‘On the Growth Rate of Ideal Coxeter Groups in Hyperbolic 3-Space’. arXiv:1507.02481 [math], 9 July 2015. http://arxiv.org/abs/1507.02481.
* http://commons.wikimedia.org/w/index.php?title=Special%3ASearch&search=
+
* Nonaka, Jun. “The Growth Rates of Ideal Coxeter Polyhedra in Hyperbolic 3-Space.” arXiv:1504.06718 [math], April 25, 2015. http://arxiv.org/abs/1504.06718.
 
+
* Johnson, Norman W., and Asia Ivić Weiss. “Quadratic Integers and Coxeter Groups.” Canadian Journal of Mathematics 51, no. 6 (December 1, 1999): 1307–36. doi:10.4153/CJM-1999-060-6.
 
+
* Cannon, James W. ‘The Combinatorial Structure of Cocompact Discrete Hyperbolic Groups’. Geometriae Dedicata 16, no. 2 (June 1984): 123–48. doi:10.1007/BF00146825.
 
 
 
 
 
 
==동영상==
 
 
 
* http://www.youtube.com/results?search_type=&search_query=
 
 
 
 
 
 
 
==관련기사==
 
 
 
네이버 뉴스 검색 (키워드 수정)
 
 
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
* http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
==블로그==
 
 
 
* 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
 
* 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==TeX 작업==
 
[[분류:개인노트]]
 
[[분류:math and physics]]
 
[[분류:math and physics]]
 
[[분류:math]]
 

2015년 12월 23일 (수) 22:58 기준 최신판

관련된 항목들


리뷰, 에세이, 강의노트

관련논문

  • http://arxiv.org/abs/1512.01133
  • Kellerhals, Ruth, and Genevieve Perren. ‘On the Growth of Cocompact Hyperbolic Coxeter Groups’. arXiv:0910.4103 [math], 21 October 2009. http://arxiv.org/abs/0910.4103.
  • Komori, Yohei, and Tomoshige Yukita. ‘On the Growth Rate of Ideal Coxeter Groups in Hyperbolic 3-Space’. arXiv:1507.02481 [math], 9 July 2015. http://arxiv.org/abs/1507.02481.
  • Nonaka, Jun. “The Growth Rates of Ideal Coxeter Polyhedra in Hyperbolic 3-Space.” arXiv:1504.06718 [math], April 25, 2015. http://arxiv.org/abs/1504.06718.
  • Johnson, Norman W., and Asia Ivić Weiss. “Quadratic Integers and Coxeter Groups.” Canadian Journal of Mathematics 51, no. 6 (December 1, 1999): 1307–36. doi:10.4153/CJM-1999-060-6.
  • Cannon, James W. ‘The Combinatorial Structure of Cocompact Discrete Hyperbolic Groups’. Geometriae Dedicata 16, no. 2 (June 1984): 123–48. doi:10.1007/BF00146825.