"Root systems and Dynkin diagrams(mathematica)"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
(피타고라스님이 이 페이지의 이름을 root systems and Dynkin diagrams(mathematica)로 바꾸었습니다.) |
|||
1번째 줄: | 1번째 줄: | ||
− | * | + | * Root Systems and Dynkin diagrams<br> * http://en.wikipedia.org/wiki/root_systems<br> * http://en.wikipedia.org/wiki/Dynkin_diagram<br><br><br><br> A_n root systems<br><br> (* A_n type Cartan matrix *)<br> r := 3<br> rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br><br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br><br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br><br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br><br> B_n root systems<br><br> Clear[rt]<br> (*B_r type Cartan matrix*)<br> r := 4<br> rt[i_] :=<br> If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], UnitVector[r, r]]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br><br> C_n root systems<br><br> Clear[rt]<br> (*C_r type Cartan matrix*)<br> r := 4<br> rt[i_] :=<br> If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], 2*UnitVector[r, r]]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br><br> D_n root systems<br><br> Clear[rt]<br> (*D_r type Cartan matrix*)<br> r := 6<br> rt[i_] :=<br> If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i],<br> UnitVector[r, r - 1] + UnitVector[r, r]]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br><br> G2 root system<br><br> Clear[r, rt]<br> (*G_ 2 type Cartan matrix*)<br> r := 2<br> rt[1] := {1, -1, 0}<br> rt[2] := {-1, 2, -1}<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> A // MatrixForm<br> rt[1]<br> rt[2] - rt[1]<br><br><br><br> F4 root system<br><br> Clear[r, rt]<br> (*F_ 4 type Cartan matrix*)<br> Clear[rt]<br> r := 4<br> rt[1] := {1, -1, 0, 0}<br> rt[2] := {0, 1, -1, 0}<br> rt[3] := {0, 0, 1, 0}<br> rt[4] := {-1, -1, -1, -1}/2<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}]<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br><br><br> E_6 root system<br><br> Clear[rt]<br> (*E_ 6 type Cartan matrix*)<br> r := 6<br> rt[1] := {0, 0, 0, 0, 0, 0, 0, 1, \[Minus]1}<br> rt[2] := {0, 0, 0, 0, 0, 0, 1, -1, 0}<br> rt[3] := {1, -2, 1, -2, 1, 1, -2, 1, 1}/3<br> rt[4] := {0, 0, 0, 1, -1, 0, 0, 0, 0}<br> rt[5] := {0, 0, 0, 0, 1, -1, 0, 0, 0}<br> rt[6] := {0, 1, -1, 0, 0, 0, 0, 0, 0}<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br> http://en.wikipedia.org/wiki/E6_(mathematics)<br><br><br><br> E_7 root system<br><br> Clear[rt]<br> (*E_ 7 type Cartan matrix*)<br> r := 7<br> alp := Sum[UnitVector[r + 1, i]/2, {i, 1, 4}] -<br> Sum[UnitVector[r + 1, i]/2, {i, 5, 8}]<br> rt[i_] :=<br> Piecewise[{{UnitVector[r + 1, i + 2] - UnitVector[r + 1, 1 + i],<br> i < 7}, {alp, i == 7}}, {i, 1, r}]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br> * http://en.wikipedia.org/wiki/E7_%28mathematics%29<br><br><br><br> E_8 root system<br><br> Clear[rt]<br> (*E_ 8 type Cartan matrix*)<br> alp := -Sum[UnitVector[r, i]/2, {i, 1, r}]<br> r := 8<br> rt[i_] :=<br> Piecewise[{{UnitVector[r, i] - UnitVector[r, 1 + i],<br> i < 7}, {UnitVector[r, i] + UnitVector[r, i - 1], i == 7}, {alp,<br> i == 8}}, {i, Range[r]}]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> A := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors"]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix"]<br> A // MatrixForm<br><br><br><br> related items<br><br> * dilogarithm and Nahm's conjecture (mathematica)<br><br><br> |
− | * http://en.wikipedia.org/wiki/root_systems | ||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | ( | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | Clear[rt]<br> (* | ||
− | |||
− | |||
− | |||
− | [ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
2010년 3월 14일 (일) 12:59 판
- Root Systems and Dynkin diagrams
* http://en.wikipedia.org/wiki/root_systems
* http://en.wikipedia.org/wiki/Dynkin_diagram
A_n root systems
(* A_n type Cartan matrix *)
r := 3
rt[i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
B_n root systems
Clear[rt]
(*B_r type Cartan matrix*)
r := 4
rt[i_] :=
If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], UnitVector[r, r]]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
C_n root systems
Clear[rt]
(*C_r type Cartan matrix*)
r := 4
rt[i_] :=
If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], 2*UnitVector[r, r]]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
D_n root systems
Clear[rt]
(*D_r type Cartan matrix*)
r := 6
rt[i_] :=
If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i],
UnitVector[r, r - 1] + UnitVector[r, r]]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
G2 root system
Clear[r, rt]
(*G_ 2 type Cartan matrix*)
r := 2
rt[1] := {1, -1, 0}
rt[2] := {-1, 2, -1}
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
A // MatrixForm
rt[1]
rt[2] - rt[1]
F4 root system
Clear[r, rt]
(*F_ 4 type Cartan matrix*)
Clear[rt]
r := 4
rt[1] := {1, -1, 0, 0}
rt[2] := {0, 1, -1, 0}
rt[3] := {0, 0, 1, 0}
rt[4] := {-1, -1, -1, -1}/2
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}]
Print["Cartan matrix"]
A // MatrixForm
E_6 root system
Clear[rt]
(*E_ 6 type Cartan matrix*)
r := 6
rt[1] := {0, 0, 0, 0, 0, 0, 0, 1, \[Minus]1}
rt[2] := {0, 0, 0, 0, 0, 0, 1, -1, 0}
rt[3] := {1, -2, 1, -2, 1, 1, -2, 1, 1}/3
rt[4] := {0, 0, 0, 1, -1, 0, 0, 0, 0}
rt[5] := {0, 0, 0, 0, 1, -1, 0, 0, 0}
rt[6] := {0, 1, -1, 0, 0, 0, 0, 0, 0}
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
http://en.wikipedia.org/wiki/E6_(mathematics)
E_7 root system
Clear[rt]
(*E_ 7 type Cartan matrix*)
r := 7
alp := Sum[UnitVector[r + 1, i]/2, {i, 1, 4}] -
Sum[UnitVector[r + 1, i]/2, {i, 5, 8}]
rt[i_] :=
Piecewise[{{UnitVector[r + 1, i + 2] - UnitVector[r + 1, 1 + i],
i < 7}, {alp, i == 7}}, {i, 1, r}]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
* http://en.wikipedia.org/wiki/E7_%28mathematics%29
E_8 root system
Clear[rt]
(*E_ 8 type Cartan matrix*)
alp := -Sum[UnitVector[r, i]/2, {i, 1, r}]
r := 8
rt[i_] :=
Piecewise[{{UnitVector[r, i] - UnitVector[r, 1 + i],
i < 7}, {UnitVector[r, i] + UnitVector[r, i - 1], i == 7}, {alp,
i == 8}}, {i, Range[r]}]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
A := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors"]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix"]
A // MatrixForm
related items
* dilogarithm and Nahm's conjecture (mathematica)