"Root systems and Dynkin diagrams(mathematica)"의 두 판 사이의 차이
1번째 줄: | 1번째 줄: | ||
− | * Root Systems and Dynkin diagrams<br> * http://en.wikipedia.org/wiki/root_systems<br> * http://en.wikipedia.org/wiki/Dynkin_diagram<br><br><br> | + | * Root Systems and Dynkin diagrams<br> * http://en.wikipedia.org/wiki/root_systems<br> * http://en.wikipedia.org/wiki/Dynkin_diagram |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | Clear[Unirt, rt, r, alp]<br> Clear[A, B, CC, DD, E6, E7, E8, F, G]<br> (* choose the one of types *)<br> ty := B<br> (* define the rank *)<br> r := 4<br> Unirt[A, i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]<br> Unirt[B, i_] :=<br> If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], UnitVector[r, r]]<br> Unirt[CC, i_] :=<br> If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], 2*UnitVector[r, r]]<br> Unirt[DD, i_] :=<br> If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i],<br> UnitVector[r, r - 1] + UnitVector[r, r]]<br> Unirt[G, 1] := {1, -1, 0}<br> Unirt[G, 2] := {-1, 2, -1}<br> Unirt[F, 1] := {1, -1, 0, 0}<br> Unirt[F, 2] := {0, 1, -1, 0}<br> Unirt[F, 3] := {0, 0, 1, 0}<br> Unirt[F, 4] := {-1, -1, -1, -1}/2<br> Unirt[E6, 1] := {0, 0, 0, 0, 0, 0, 0, 1, \[Minus]1}<br> Unirt[E6, 2] := {0, 0, 0, 0, 0, 0, 1, -1, 0}<br> Unirt[E6, 3] := {1, -2, 1, -2, 1, 1, -2, 1, 1}/3<br> Unirt[E6, 4] := {0, 0, 0, 1, -1, 0, 0, 0, 0}<br> Unirt[E6, 5] := {0, 0, 0, 0, 1, -1, 0, 0, 0}<br> Unirt[E6, 6] := {0, 1, -1, 0, 0, 0, 0, 0, 0}<br> Unirt[E7, i_] :=<br> Piecewise[{{UnitVector[r + 1, i + 2] - UnitVector[r + 1, 1 + i],<br> i < 7}, {{1/2, 1/2, 1/2, 1/2, -(1/2), -(1/2), -(1/2), -(1/2)},<br> i == 7}}, {i, 1, r}]<br> Unirt[E8, i_] :=<br> Piecewise[{{UnitVector[r, i] - UnitVector[r, 1 + i],<br> i < 7}, {UnitVector[r, i] + UnitVector[r, i - 1],<br> i == 7}, {{-(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/<br> 2), -(1/2)}, i == 8}}, {i, Range[r]}]<br> rt[i_] := Unirt[ty, i]<br> b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]<br> CA := Table[b[i, j], {i, 1, r}, {j, 1, r}]<br> Print["root vectors of ", ty, r]<br> Table[rt[i], {i, 1, r}] // TableForm<br> Print["Cartan matrix of ", ty, r]<br> CA // MatrixForm<br> Print["Dynkin diagram of ", ty, r]<br> GraphPlot[CA, VertexLabeling -> True] |
2010년 3월 14일 (일) 14:16 판
- Root Systems and Dynkin diagrams
* http://en.wikipedia.org/wiki/root_systems
* http://en.wikipedia.org/wiki/Dynkin_diagram
Clear[Unirt, rt, r, alp]
Clear[A, B, CC, DD, E6, E7, E8, F, G]
(* choose the one of types *)
ty := B
(* define the rank *)
r := 4
Unirt[A, i_] := UnitVector[r + 1, i] - UnitVector[r + 1, i + 1]
Unirt[B, i_] :=
If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], UnitVector[r, r]]
Unirt[CC, i_] :=
If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i], 2*UnitVector[r, r]]
Unirt[DD, i_] :=
If[i < r, UnitVector[r, i] - UnitVector[r, 1 + i],
UnitVector[r, r - 1] + UnitVector[r, r]]
Unirt[G, 1] := {1, -1, 0}
Unirt[G, 2] := {-1, 2, -1}
Unirt[F, 1] := {1, -1, 0, 0}
Unirt[F, 2] := {0, 1, -1, 0}
Unirt[F, 3] := {0, 0, 1, 0}
Unirt[F, 4] := {-1, -1, -1, -1}/2
Unirt[E6, 1] := {0, 0, 0, 0, 0, 0, 0, 1, \[Minus]1}
Unirt[E6, 2] := {0, 0, 0, 0, 0, 0, 1, -1, 0}
Unirt[E6, 3] := {1, -2, 1, -2, 1, 1, -2, 1, 1}/3
Unirt[E6, 4] := {0, 0, 0, 1, -1, 0, 0, 0, 0}
Unirt[E6, 5] := {0, 0, 0, 0, 1, -1, 0, 0, 0}
Unirt[E6, 6] := {0, 1, -1, 0, 0, 0, 0, 0, 0}
Unirt[E7, i_] :=
Piecewise[{{UnitVector[r + 1, i + 2] - UnitVector[r + 1, 1 + i],
i < 7}, {{1/2, 1/2, 1/2, 1/2, -(1/2), -(1/2), -(1/2), -(1/2)},
i == 7}}, {i, 1, r}]
Unirt[E8, i_] :=
Piecewise[{{UnitVector[r, i] - UnitVector[r, 1 + i],
i < 7}, {UnitVector[r, i] + UnitVector[r, i - 1],
i == 7}, {{-(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/2), -(1/
2), -(1/2)}, i == 8}}, {i, Range[r]}]
rt[i_] := Unirt[ty, i]
b[i_, j_] := (2 Dot[rt[i], rt[j]])/Dot[rt[j], rt[j]]
CA := Table[b[i, j], {i, 1, r}, {j, 1, r}]
Print["root vectors of ", ty, r]
Table[rt[i], {i, 1, r}] // TableForm
Print["Cartan matrix of ", ty, r]
CA // MatrixForm
Print["Dynkin diagram of ", ty, r]
GraphPlot[CA, VertexLabeling -> True]