"클링겐-지겔 (Klingen-Siegel) 정리"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
Pythagoras0 (토론 | 기여) |
Pythagoras0 (토론 | 기여) |
||
(같은 사용자의 중간 판 2개는 보이지 않습니다) | |||
2번째 줄: | 2번째 줄: | ||
* F : totally real 수체 | * F : totally real 수체 | ||
* <math>[F: \mathbb{Q}]=n</math> | * <math>[F: \mathbb{Q}]=n</math> | ||
− | * | + | * <math>m>0</math>일 때, 다음을 만족하는 적당한 유리수 <math>r(m)\in \mathbb{Q}</math>가 존재한다 |
:<math>\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}</math> | :<math>\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}</math> | ||
13번째 줄: | 13번째 줄: | ||
==관련논문== | ==관련논문== | ||
− | * Beilinson, Alexander, Guido Kings, and Andrey Levin. ‘Topological Polylogarithms and | + | * Beilinson, Alexander, Guido Kings, and Andrey Levin. ‘Topological Polylogarithms and <math>p</math>-Adic Interpolation of <math>L</math>-Values of Totally Real Fields’. arXiv:1410.4741 [math], 17 October 2014. http://arxiv.org/abs/1410.4741. |
− | + | * Nori, Madhav V. "Some Eisenstein cohomology classes for the integral unimodular group." Proceedings of the International Congress of Mathematicians. Vol. 1. 1995. http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0690.0696.ocr.pdf | |
− | + | * Sczech, Robert. ‘Eisenstein Group Cocycles for GL N and Values ofL-Functions’. Inventiones Mathematicae 113, no. 1 (1 December 1993): 581–616. doi:10.1007/BF01244319. | |
==사전 형태의 자료== | ==사전 형태의 자료== | ||
* http://planetmath.org/SiegelKlingenTheorem.html | * http://planetmath.org/SiegelKlingenTheorem.html |
2020년 11월 12일 (목) 07:27 기준 최신판
개요
- F : totally real 수체
- \([F: \mathbb{Q}]=n\)
- \(m>0\)일 때, 다음을 만족하는 적당한 유리수 \(r(m)\in \mathbb{Q}\)가 존재한다
\[\zeta_{F}(2m)=r(m)\frac{\pi^{2mn}}{\sqrt{|d_{F}|}}\]
수학용어번역
관련논문
- Beilinson, Alexander, Guido Kings, and Andrey Levin. ‘Topological Polylogarithms and \(p\)-Adic Interpolation of \(L\)-Values of Totally Real Fields’. arXiv:1410.4741 [math], 17 October 2014. http://arxiv.org/abs/1410.4741.
- Nori, Madhav V. "Some Eisenstein cohomology classes for the integral unimodular group." Proceedings of the International Congress of Mathematicians. Vol. 1. 1995. http://www.mathunion.org/ICM/ICM1994.1/Main/icm1994.1.0690.0696.ocr.pdf
- Sczech, Robert. ‘Eisenstein Group Cocycles for GL N and Values ofL-Functions’. Inventiones Mathematicae 113, no. 1 (1 December 1993): 581–616. doi:10.1007/BF01244319.