"Cyclotomic numbers and Chebyshev polynomials"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* borrowed from [[Andrews-Gordon identity]]
 
* borrowed from [[Andrews-Gordon identity]]
13번째 줄: 13번째 줄:
 
 
 
 
  
<h5>diagonals of polygon</h5>
+
==diagonals of polygon</h5>
  
 
Clear[r]<br> r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]<br> Table[N[r[i], 10], {i, 0, 5}]<br> Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]
 
Clear[r]<br> r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]<br> Table[N[r[i], 10], {i, 0, 5}]<br> Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]
21번째 줄: 21번째 줄:
 
 
 
 
  
<h5>chebyshev polynomials</h5>
+
==chebyshev polynomials</h5>
  
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
 
* [http://pythagoras0.springnote.com/pages/4682477 체비셰프 다항식]
30번째 줄: 30번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
38번째 줄: 38번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
 
* [[sl(2) - orthogonal polynomials and Lie theory]]
56번째 줄: 56번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
87번째 줄: 87번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
96번째 줄: 96번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
106번째 줄: 106번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
114번째 줄: 114번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표 현 안내]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]

2012년 10월 28일 (일) 12:56 판

==introduction

  • borrowed from Andrews-Gordon identity
  • quantum dimension and thier recurrence relation
    \(d_i=\frac{\sin \frac{(i+1)\pi}{k+2}}{\sin \frac{\pi}{k+2}}}\) satisfies
    \(d_i^2=1+d_{i-1}d_{i+1}\) where \(d_0=1\), \(d_k=1\)

 

  1. (*choose k for c (2,k+2) minimal model*)k := 11
    d[k_, i_] := Sin[(i + 1) Pi/(k + 2)]/Sin[Pi/(k + 2)]
    Table[{i, d[k, i]}, {i, 1, k}] // TableForm
    Table[{i, N[(d[k, i])^2 - (1 + d[k, i - 1]*d[k, i + 1]), 10]}, {i, 1,
       k}] // TableForm
  2. Plot[d[k, i], {i, 0, 2 k}]

 

 

==diagonals of polygon

Clear[r]
r[i_] := Sin[((i + 1) Pi)/7]/Sin[Pi/7]
Table[N[r[i], 10], {i, 0, 5}]
Table[N[r[i]^2 - (1 + r[i - 1] r[i + 1]), 10], {i, 1, 4}]

 

 

==chebyshev polynomials

 

 

==history

 

 

==related items

 

 

encyclopedia

 

 

==books

 

 

 

articles

 

 

==question and answers(Math Overflow)

 

 

==blogs

 

 

==experts on the field

 

 

==links