"디리클레 L-함수의 미분"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
 
(같은 사용자의 중간 판 16개는 보이지 않습니다)
1번째 줄: 1번째 줄:
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">이 항목의 스프링노트 원문주소==
+
==개요==
 +
* <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴
 +
:<math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math>
  
* [[L-함수의 미분]]<br>
 
  
 
 
  
 
+
==예1==
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">개요==
+
;정리
 +
수체 <math>K=\mathbb{Q}(i)</math>에 대하여 다음이 성립한다
 +
:<math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math>
 +
여기서 <math>\beta</math>는 [[디리클레 베타함수]]
  
 
+
;증명
 +
<math>\chi</math>가 <math>\chi(1)=1,\chi(3)=-1</math>인 주기가 4인 디리클레 캐릭터라고 하면,
 +
<math>L_{-4}</math>는 다음과 같이 쓸 수 있다.
 +
:<math>L(s):=L_{-4}(s) =\sum_{n\geq 1}\frac{\chi(n)}{n^s}</math>
 +
이제 <math>L'(1)</math> 의 값을 구하자.
 +
[[후르비츠 제타함수(Hurwitz zeta function)]]를 이용한 <math>L</math>-함수의 표현
 +
:<math>L(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}</math>과 [[후르비츠 제타함수(Hurwitz zeta function)]] 의 에르미트 표현
 +
:<math>\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}</math>  을 사용하면, 다음을 얻는다.
 +
:<math>L'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}</math>
 +
따라서
 +
:<math>L'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-L(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}</math>
 +
다음의 함수
 +
:<math>\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})L(s)</math>
 +
가 만족시키는 함수방정식
 +
:<math>\Lambda(s)=\Lambda(1-s)</math>
 +
을 사용하자.
 +
<math>L(0)=\frac{1}{2}</math> 을 쉽게 얻을 수 있다.
  
 
+
한편 [[다이감마 함수(digamma function)]] 의 값
 +
:<math>\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma</math>에서 <math>\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)</math>를 얻고, 이로부터
 +
:<math>L'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})</math>
 +
를 얻는다.
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">리만제타함수==
+
따라서
 +
:<math>L'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln(\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})</math>
  
* [[리만제타함수]]<br>[[리만제타함수|리만제타함수]]<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math><br>
+
* [[로그 탄젠트 적분(log tangent integral)]] 항목 참조
  
 
 
  
 
+
==예2==
 +
* 수체 <math>K=\mathbb{Q}(\omega)</math>, <math>\omega^2+\omega+1=0</math>에 대하여 다음이 성립한다
 +
:<math>L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})</math>
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">디리클레 L-함수의 미분==
 
  
* <math>d_K</math>를 판별식으로 갖는 복소이차수체 <math>K</math>에 대하여, [[디리클레 L-함수]]는 다음을 만족시킴<br><math>L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})</math><br>
+
==테이블==
 +
* 아래의 표에서 <math>\epsilon=10^{-6}</math>
 +
:<math>
 +
\begin{array}{c|c|c|c|c}
 +
K & L_K'(1-\epsilon ) & L_K'(\epsilon +1) & \sum _{a=1}^{\left|d_K\right|-1} \chi (a) \log \left(\Gamma \left(\frac{a}{\left|d_K\right|}\right)\right) & \sum _{a=1}^{\left|d_K\right|-1} \chi (a) \log \left(\Gamma \left(\frac{a}{\left|d_K\right|}\right)\right) \\
 +
\hline
 +
\mathbb{Q}(i) & 0.1929015 & 0.1929012 & 0.1929013 & \frac{1}{4} \pi  (\gamma +\log (2 \pi ))-\frac{1}{2} \pi  \log \left(\frac{\Gamma \left(\frac{1}{4}\right)}{\Gamma \left(\frac{3}{4}\right)}\right) \\
 +
\mathbb{Q}\left(i \sqrt{2}\right) & -0.02300448 & -0.02300470 & -0.02300459 & \frac{\pi  (\gamma +\log (2 \pi ))}{2 \sqrt{2}}-\frac{\pi  \log \left(\frac{\Gamma \left(\frac{1}{8}\right) \Gamma \left(\frac{3}{8}\right)}{\Gamma \left(\frac{5}{8}\right) \Gamma \left(\frac{7}{8}\right)}\right)}{2 \sqrt{2}} \\
 +
\mathbb{Q}\left(i \sqrt{3}\right) & 0.2226631 & 0.2226629 & 0.2226630 & \frac{\pi (\gamma +\log (2 \pi ))}{3 \sqrt{3}}-\frac{\pi  \log \left(\frac{\Gamma \left(\frac{1}{3}\right)}{\Gamma \left(\frac{2}{3}\right)}\right)}{\sqrt{3}} \\
 +
\mathbb{Q}\left(i \sqrt{5}\right) & -0.4460964 & -0.4460956 & -0.4460960 & \frac{\pi  (\gamma +\log (2 \pi ))}{\sqrt{5}}-\frac{\pi \log \left(\frac{\Gamma \left(\frac{1}{20}\right) \Gamma \left(\frac{3}{20}\right) \Gamma \left(\frac{7}{20}\right) \Gamma \left(\frac{9}{20}\right)}{\Gamma \left(\frac{11}{20}\right) \Gamma \left(\frac{13}{20}\right) \Gamma \left(\frac{17}{20}\right) \Gamma \left(\frac{19}{20}\right)}\right)}{2 \sqrt{5}} \\
 +
\mathbb{Q}\left(i \sqrt{6}\right) & -0.4226378 & -0.4226366 & -0.4226372 & \frac{\pi  (\gamma +\log (2 \pi ))}{\sqrt{6}}-\frac{\pi  \log \left(\frac{\Gamma \left(\frac{1}{24}\right) \Gamma \left(\frac{5}{24}\right) \Gamma \left(\frac{7}{24}\right) \Gamma \left(\frac{11}{24}\right)}{\Gamma \left(\frac{13}{24}\right) \Gamma \left(\frac{17}{24}\right) \Gamma \left(\frac{19}{24}\right) \Gamma \left(\frac{23}{24}\right)}\right)}{2 \sqrt{6}} \\
 +
\mathbb{Q}\left(i \sqrt{7}\right) & 0.01856617 & 0.01856579 & 0.01856598 & \frac{\pi  (\gamma +\log (2 \pi ))}{\sqrt{7}}-\frac{\pi  \log \left(\frac{\Gamma \left(\frac{1}{7}\right) \Gamma \left(\frac{2}{7}\right) \Gamma \left(\frac{4}{7}\right)}{\Gamma \left(\frac{3}{7}\right) \Gamma \left(\frac{5}{7}\right) \Gamma \left(\frac{6}{7}\right)}\right)}{\sqrt{7}}
 +
\end{array}
 +
</math>
  
 
 
  
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">예==
+
==메모==
 +
* [[리만제타함수]]는 다음을 만족한다
 +
:<math>\zeta'(0)=-\log{\sqrt{2\pi}}</math>
 +
  
* [[디리클레 베타함수]]<br><math>K=\mathbb{Q}(i)</math><br><math>\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})</math><br>
+
* <math>K=\mathbb{Q}(\omega)</math>, <math>\omega^2+\omega+1=0</math><br><math>L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})</math><br>
+
==관련된 항목들==
 +
* [[Chowla-셀베르그 공식]]
 +
* [[Birch and Swinnerton-Dyer 추측]]
  
 
 
  
 
+
==매스매티카 파일 및 계산 리소스==
 +
* https://docs.google.com/file/d/0B8XXo8Tve1cxNDE2U25oU3pZVlU/edit
  
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">재미있는 사실==
 
  
 
+
==관련논문==
 
+
* Yang, T. (2010). The Chowla-Selberg formula and the Colmez conjecture. Canad. J. Math, 62(2), 456-472. http://www.math.wisc.edu/~thyang/ColmezConjectureFinal2010.pdf
* Math Overflow http://mathoverflow.net/search?q=
+
* Anderson, G. W. (1982). [http://archive.numdam.org/ARCHIVE/CM/CM_1982__45_3/CM_1982__45_3_315_0/CM_1982__45_3_315_0.pdf Logarithmic derivatives of Dirichlet <math> L </math>-functions and the periods of abelian varieties]. Compositio Mathematica, 45(3), 315-332.
* 네이버 지식인 http://kin.search.naver.com/search.naver?where=kin_qna&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">역사==
 
 
 
 
 
 
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* [[수학사연표 (역사)|수학사연표]]
 
*  
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">메모==
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련된 항목들==
 
 
 
* [[Chowla-셀베르그 공식]]<br>
 
* [[Birch and Swinnerton-Dyer 추측]]<br>
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">수학용어번역==
 
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">사전 형태의 자료==
 
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/~njas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련논문==
 
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련도서==
 
 
 
*  도서내검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/contentSearch.do?query=
 
*  도서검색<br>
 
** http://books.google.com/books?q=
 
** http://book.daum.net/search/mainSearch.do?query=
 
** http://book.daum.net/search/mainSearch.do?query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">관련기사==
 
 
 
*  네이버 뉴스 검색 (키워드 수정)<br>
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
** http://news.search.naver.com/search.naver?where=news&x=0&y=0&sm=tab_hty&query=
 
 
 
 
 
 
 
 
 
 
 
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">블로그==
 
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
* [http://math.dongascience.com/ 수학동아]
 
* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]
 
* [http://betterexplained.com/ BetterExplained]
 

2020년 11월 12일 (목) 21:07 기준 최신판

개요

  • \(d_K\)를 판별식으로 갖는 복소이차수체 \(K\)에 대하여, 디리클레 L-함수는 다음을 만족시킴

\[L_{d_K}'(1)=\frac{2\pi h_K(\gamma+\ln 2\pi)}{w_K \cdot \sqrt{|d_K|}}-\frac{\pi}{\sqrt{|d_K|}}\sum_{(a,d_K)=1}\chi(a)\log\Gamma (\frac{a}{|d_K|})\]


예1

정리

수체 \(K=\mathbb{Q}(i)\)에 대하여 다음이 성립한다 \[\beta'(1)=L_{-4}'(1)=\frac{\pi}{4}(\gamma+\ln 2\pi)-\frac{\pi}{2}\ln(\frac{\Gamma(1/4)}{\Gamma(3/4)})\] 여기서 \(\beta\)는 디리클레 베타함수

증명

\(\chi\)가 \(\chi(1)=1,\chi(3)=-1\)인 주기가 4인 디리클레 캐릭터라고 하면, \(L_{-4}\)는 다음과 같이 쓸 수 있다. \[L(s):=L_{-4}(s) =\sum_{n\geq 1}\frac{\chi(n)}{n^s}\] 이제 \(L'(1)\) 의 값을 구하자. 후르비츠 제타함수(Hurwitz zeta function)를 이용한 \(L\)-함수의 표현 \[L(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}\]과 후르비츠 제타함수(Hurwitz zeta function) 의 에르미트 표현 \[\frac{\partial }{\partial s}\zeta(s,a)|_{s=0} =\log \frac{\Gamma(a)}{\sqrt{2\pi}}\] 을 사용하면, 다음을 얻는다. \[L'(s)=4^{-s}\{\zeta(s,1/4)-\zeta(s,3/4)\}(-\log 4)+4^{-s}\{\zeta'(s,1/4)-\zeta'(s,3/4)\}\] 따라서 \[L'(0)=\{\zeta(0,1/4)-\zeta(0,3/4)\}(-\log 4)+\{\zeta'(0,1/4)-\zeta'(0,3/4)\}=-L(0)\log4+\log\frac{\Gamma(1/4)}{\Gamma(3/4)}\] 다음의 함수 \[\Lambda(s)=(\frac{\pi}{4})^{-{(s+1)}/{2}}\Gamma(\frac{s+1}{2})L(s)\] 가 만족시키는 함수방정식 \[\Lambda(s)=\Lambda(1-s)\] 을 사용하자. \(L(0)=\frac{1}{2}\) 을 쉽게 얻을 수 있다.

한편 다이감마 함수(digamma function) 의 값 \[\psi\left(\frac{1}{2}\right) = -2\ln{2} - \gamma\]에서 \(\Gamma'(1/2)=-\sqrt{\pi}(2\ln2+\gamma)\)를 얻고, 이로부터 \[L'(1)=\frac{\pi}{4}\gamma+\frac{\pi}{2}\ln(\frac{\Gamma(3/4)}{\Gamma(1/4)}\sqrt{2\pi})\] 를 얻는다.

따라서 \[L'(1)- \frac{\pi}{4}\gamma=\frac{\pi}{2}\ln(\frac{\Gamma(\frac{3}{4})}{\Gamma(\frac{1}{4})}\sqrt{2\pi})\]


예2

  • 수체 \(K=\mathbb{Q}(\omega)\), \(\omega^2+\omega+1=0\)에 대하여 다음이 성립한다

\[L_{-3}'(1)=\frac{\pi}{3\sqrt{3}}(\gamma+\ln 2\pi)-\frac{\pi}{\sqrt{3}}\ln(\frac{\Gamma(1/3)}{\Gamma(2/3)})\]


테이블

  • 아래의 표에서 \(\epsilon=10^{-6}\)

\[ \begin{array}{c|c|c|c|c} K & L_K'(1-\epsilon ) & L_K'(\epsilon +1) & \sum _{a=1}^{\left|d_K\right|-1} \chi (a) \log \left(\Gamma \left(\frac{a}{\left|d_K\right|}\right)\right) & \sum _{a=1}^{\left|d_K\right|-1} \chi (a) \log \left(\Gamma \left(\frac{a}{\left|d_K\right|}\right)\right) \\ \hline \mathbb{Q}(i) & 0.1929015 & 0.1929012 & 0.1929013 & \frac{1}{4} \pi (\gamma +\log (2 \pi ))-\frac{1}{2} \pi \log \left(\frac{\Gamma \left(\frac{1}{4}\right)}{\Gamma \left(\frac{3}{4}\right)}\right) \\ \mathbb{Q}\left(i \sqrt{2}\right) & -0.02300448 & -0.02300470 & -0.02300459 & \frac{\pi (\gamma +\log (2 \pi ))}{2 \sqrt{2}}-\frac{\pi \log \left(\frac{\Gamma \left(\frac{1}{8}\right) \Gamma \left(\frac{3}{8}\right)}{\Gamma \left(\frac{5}{8}\right) \Gamma \left(\frac{7}{8}\right)}\right)}{2 \sqrt{2}} \\ \mathbb{Q}\left(i \sqrt{3}\right) & 0.2226631 & 0.2226629 & 0.2226630 & \frac{\pi (\gamma +\log (2 \pi ))}{3 \sqrt{3}}-\frac{\pi \log \left(\frac{\Gamma \left(\frac{1}{3}\right)}{\Gamma \left(\frac{2}{3}\right)}\right)}{\sqrt{3}} \\ \mathbb{Q}\left(i \sqrt{5}\right) & -0.4460964 & -0.4460956 & -0.4460960 & \frac{\pi (\gamma +\log (2 \pi ))}{\sqrt{5}}-\frac{\pi \log \left(\frac{\Gamma \left(\frac{1}{20}\right) \Gamma \left(\frac{3}{20}\right) \Gamma \left(\frac{7}{20}\right) \Gamma \left(\frac{9}{20}\right)}{\Gamma \left(\frac{11}{20}\right) \Gamma \left(\frac{13}{20}\right) \Gamma \left(\frac{17}{20}\right) \Gamma \left(\frac{19}{20}\right)}\right)}{2 \sqrt{5}} \\ \mathbb{Q}\left(i \sqrt{6}\right) & -0.4226378 & -0.4226366 & -0.4226372 & \frac{\pi (\gamma +\log (2 \pi ))}{\sqrt{6}}-\frac{\pi \log \left(\frac{\Gamma \left(\frac{1}{24}\right) \Gamma \left(\frac{5}{24}\right) \Gamma \left(\frac{7}{24}\right) \Gamma \left(\frac{11}{24}\right)}{\Gamma \left(\frac{13}{24}\right) \Gamma \left(\frac{17}{24}\right) \Gamma \left(\frac{19}{24}\right) \Gamma \left(\frac{23}{24}\right)}\right)}{2 \sqrt{6}} \\ \mathbb{Q}\left(i \sqrt{7}\right) & 0.01856617 & 0.01856579 & 0.01856598 & \frac{\pi (\gamma +\log (2 \pi ))}{\sqrt{7}}-\frac{\pi \log \left(\frac{\Gamma \left(\frac{1}{7}\right) \Gamma \left(\frac{2}{7}\right) \Gamma \left(\frac{4}{7}\right)}{\Gamma \left(\frac{3}{7}\right) \Gamma \left(\frac{5}{7}\right) \Gamma \left(\frac{6}{7}\right)}\right)}{\sqrt{7}} \end{array} \]


메모

\[\zeta'(0)=-\log{\sqrt{2\pi}}\]


관련된 항목들


매스매티카 파일 및 계산 리소스


관련논문