"가우스와 순환소수"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
− | <h5> | + | <h5>개요</h5> |
* Felix Klein의 책, [http://books.google.com/books?hl=ko&id=NM36hgqmOLkC&dq=klein+development+19th+century+mathematics&printsec=frontcover&source=web&ots=m5vVKzqb5z&sig=bQHpPt-Fh4kAYbn3gsPytuSN-70&sa=X&oi=book_result&resnum=2&ct=result Development of mathematics in the 19th century], chapter I. Gauss<br> | * Felix Klein의 책, [http://books.google.com/books?hl=ko&id=NM36hgqmOLkC&dq=klein+development+19th+century+mathematics&printsec=frontcover&source=web&ots=m5vVKzqb5z&sig=bQHpPt-Fh4kAYbn3gsPytuSN-70&sa=X&oi=book_result&resnum=2&ct=result Development of mathematics in the 19th century], chapter I. Gauss<br> | ||
5번째 줄: | 5번째 줄: | ||
Gauss set out huge tables: of prime numbers, of quadratic residues and non-residues, and of the fractions 1/p for p=1 to p = 1000 with their decimal expansions carried out to a complete period, and therefore sometimes to several hundred places! With this last table Gauss tried to determine the dependence of the period on the denominator p. | Gauss set out huge tables: of prime numbers, of quadratic residues and non-residues, and of the fractions 1/p for p=1 to p = 1000 with their decimal expansions carried out to a complete period, and therefore sometimes to several hundred places! With this last table Gauss tried to determine the dependence of the period on the denominator p. | ||
− | 가우스는 거대한 표를 만들었다 : 소수, 이차잉여와 비이차잉여, 그리고 1/p 꼴의 분수를 십진전개한 순환마디 등이 담긴 표를, 따라서 어떤 때에는 수백자리까지 계산이 되어있다. 이 중 마지막 것을 가지고 가우스는 p와 순환마디의 길이 사이의 관계를 밝히려 했다. (30p) | + | 가우스는 거대한 표를 만들었다 : 소수, 이차잉여와 비이차잉여, 그리고 1/p 꼴의 분수를 십진전개한 순환마디 등이 담긴 표를, 따라서 어떤 때에는 수백자리까지 계산이 되어있다. 이 중 마지막 것을 가지고 가우스는 p와 순환마디의 길이 사이의 관계를 밝히려 했다. (30p)[http://bomber0.byus.net/index.php/2008/09/06/731 ] |
</blockquote> | </blockquote> | ||
− | |||
16번째 줄: | 15번째 줄: | ||
− | <h5> | + | <h5>관련논문</h5> |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
* [http://sarton.ugent.be/index.php?id=75&type=file Decimal Periods and their Tables: A Research Topic (1765-1801), Materials on the Genesis of the Disquisitiones Arithmeticae] | * [http://sarton.ugent.be/index.php?id=75&type=file Decimal Periods and their Tables: A Research Topic (1765-1801), Materials on the Genesis of the Disquisitiones Arithmeticae] | ||
* [http://www.kuttaka.org/Gauss_Decimal.pdf Decimal Periods and their Tables: A German Research Topic (1765-1801)]<br> | * [http://www.kuttaka.org/Gauss_Decimal.pdf Decimal Periods and their Tables: A German Research Topic (1765-1801)]<br> | ||
** Maarten Bullynck, Materials on the Genesis of the Disquisitiones Arithmeticae, Part IIb. | ** Maarten Bullynck, Materials on the Genesis of the Disquisitiones Arithmeticae, Part IIb. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
2010년 4월 14일 (수) 05:55 판
개요
- Felix Klein의 책, Development of mathematics in the 19th century, chapter I. Gauss
Gauss set out huge tables: of prime numbers, of quadratic residues and non-residues, and of the fractions 1/p for p=1 to p = 1000 with their decimal expansions carried out to a complete period, and therefore sometimes to several hundred places! With this last table Gauss tried to determine the dependence of the period on the denominator p.
가우스는 거대한 표를 만들었다 : 소수, 이차잉여와 비이차잉여, 그리고 1/p 꼴의 분수를 십진전개한 순환마디 등이 담긴 표를, 따라서 어떤 때에는 수백자리까지 계산이 되어있다. 이 중 마지막 것을 가지고 가우스는 p와 순환마디의 길이 사이의 관계를 밝히려 했다. (30p)[1]
[/pages/3063160/attachments/1371002 gausstable.JPG]
관련논문
- Decimal Periods and their Tables: A Research Topic (1765-1801), Materials on the Genesis of the Disquisitiones Arithmeticae
- Decimal Periods and their Tables: A German Research Topic (1765-1801)
- Maarten Bullynck, Materials on the Genesis of the Disquisitiones Arithmeticae, Part IIb.
블로그
- 142857와 군론의 만남(4) : 소년 가우스의 실험장
- 피타고라스의 창, 2008-9-6
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=