"타원곡선의 주기"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
잔글 (찾아 바꾸기 – “* [http://www.ams.org/mathmoments/ Mathematical Moments from the AMS]” 문자열을 “” 문자열로)
 
(같은 사용자의 중간 판 13개는 보이지 않습니다)
1번째 줄: 1번째 줄:
==이 항목의 스프링노트 원문주소==
 
 
* [[타원곡선의 주기]]<br>
 
 
 
 
 
 
 
 
 
==개요==
 
==개요==
 +
* 복소 타원 곡선의 주기
 +
* [[리만 곡면의 주기 행렬과 겹선형 관계 (bilinear relation)]]의 <math>g=1</math>인 경우에 해당
 +
  
 
 
 
 
 
  
 
==정의==
 
==정의==
  
타원곡선 <math>y^2=(x-e_1)(x-e_2)(x-e_3)</math>의 주기는 두 복소수 <math>\omega_1,\omega_2</math>에 의해 생성되는 2차원 격자 <math>\Lambda=\{m_1\omega_1+m_2\omega_2)|m_1,m_2\in\mathbb{Z}\}</math>이다<br><math>\omega_1=2\int_{e_1}^{\infty}\frac{dx}{\sqrt{(x-e_1)(x-e_2)(x-e_3)}}</math><br><math>\omega_2=2\int_{e_2}^{e_1}\frac{dx}{\sqrt{(x-e_1)(x-e_2)(x-e_3)}}</math><br>
+
타원곡선 <math>y^2=(x-e_1)(x-e_2)(x-e_3)</math>의 주기는 두 복소수 <math>\omega_1,\omega_2</math>에 의해 생성되는 2차원 격자 <math>\Lambda=\{m_1\omega_1+m_2\omega_2)|m_1,m_2\in\mathbb{Z}\}</math>이다:<math>\omega_1=2\int_{e_1}^{\infty}\frac{dx}{\sqrt{(x-e_1)(x-e_2)(x-e_3)}}</math>:<math>\omega_2=2\int_{e_2}^{e_1}\frac{dx}{\sqrt{(x-e_1)(x-e_2)(x-e_3)}}</math>
  
 
+
  
 
+
  
 
==예==
 
==예==
  
타원곡선 <math>y^2=x^3-x</math>의 경우 ([[타원곡선 y²=x³-x|타원곡선 y^2=x^3-x]] 에서 가져옴)<br><math>e_1=1, e_2=0, e_3=-1</math>로 두자<br><math>\omega_1=2\int_{1}^{\infty}\frac{dx}{\sqrt{x^3-x}}=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math><br><math>\omega_2=2i\int_0^1\frac{dx}{\sqrt{x-x^3}}=2i\int_{\infty}^1\frac{-dy}{\sqrt{y^3-y}}=i\omega_{1}</math><br>
+
타원곡선 <math>y^2=x^3-x</math>의 경우 ([[타원곡선 y²=x³-x|타원곡선 y^2=x^3-x]] 에서 가져옴):<math>e_1=1, e_2=0, e_3=-1</math>로 두자:<math>\omega_1=2\int_{1}^{\infty}\frac{dx}{\sqrt{x^3-x}}=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots</math>:<math>\omega_2=2i\int_0^1\frac{dx}{\sqrt{x-x^3}}=2i\int_{\infty}^1\frac{-dy}{\sqrt{y^3-y}}=i\omega_{1}</math>
  
 
+
  
 
+
  
 
+
  
 
==1종타원적분과의 관계==
 
==1종타원적분과의 관계==
  
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br>
+
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
  
 
+
  
 
+
  
 
==1종완전타원적분과 타원곡선의 주기1==
 
==1종완전타원적분과 타원곡선의 주기1==
 
+
* [[르장드르의 타원곡선 모임]]
<math>\int_1^{\infty}\frac{dx}{\sqrt{x(x-1)(x-\lambda)}}=2K(k) = 2\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=2\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
+
:<math>\int_1^{\infty}\frac{dx}{\sqrt{x(x-1)(x-\lambda)}}=2K(k) = 2\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=2\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
  
 
여기서 <math>\lambda=k^2</math>.
 
여기서 <math>\lambda=k^2</math>.
 +
* 일반적으로
 +
:<math>\int_{c}^{b}\frac{dt}{\sqrt{(a-t)(b-t)(t-c)}}=\frac{2}{\sqrt{a-c}}K(\sqrt{\frac{b-c}{a-c}})</math>
  
<math>\int_{c}^{b}\frac{dt}{\sqrt{(a-t)(b-t)(t-c)}}=\frac{2}{\sqrt{a-c}}K(\sqrt{\frac{b-c}{a-c}})</math>
+
 
 
 
 
  
 
+
  
 
==1종완전타원적분과 타원곡선의 주기2==
 
==1종완전타원적분과 타원곡선의 주기2==
 
+
* 다음이 성립한다
<math>K(k)=\frac{1}{2}\int_{0}^{\infty} \frac{dx}{\sqrt{x (x^2 - (4k^2-2)x + 1)}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
+
:<math>K(k)=\frac{1}{2}\int_{0}^{\infty} \frac{dx}{\sqrt{x (x^2 - (4k^2-2)x + 1)}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx</math>
  
 
(증명)
 
(증명)
  
<math>k=\cos \alpha</math> 로 두자.
+
<math>k=\cos \alpha</math> 두자.
  
 
<math>K(\cos\alpha)=\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \cos^2 \alpha \sin^2 \theta }}</math>
 
<math>K(\cos\alpha)=\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \cos^2 \alpha \sin^2 \theta }}</math>
  
<math>=\int_{0}^{1} \frac{2dt}{\sqrt{t^4 - 2(2\cos^2 \alpha - 1)t^2 + 1}}</math> (<math>t =\tan (\theta/2) </math>로 치환)
+
<math>=\int_{0}^{1} \frac{2dt}{\sqrt{t^4 - 2(2\cos^2 \alpha - 1)t^2 + 1}}</math> (<math>t =\tan (\theta/2) </math>로 치환)
  
<math>=\int_{1}^{\infty} \frac{2dx}{\sqrt{x^4 - 2x^2 \cos 2\alpha + 1}}</math> (<math>x=\frac{1}{t}</math> 로 치환)
+
<math>=\int_{1}^{\infty} \frac{2dx}{\sqrt{x^4 - 2x^2 \cos 2\alpha + 1}}</math> (<math>x=\frac{1}{t}</math> 치환)
  
<math>=\int_{1}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}</math> (<math>u=x^2</math>로 치환)
+
<math>=\int_{1}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}</math> (<math>u=x^2</math>로 치환)
  
 
+
  
한편,  <math>u=\frac{1}{v}</math> 치환을 통하여
+
한편, <math>u=\frac{1}{v}</math> 치환을 통하여
  
 
<math>\int_{1}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}=\int_{0}^{1} \frac{dv}{\sqrt{v (v^2 - 2v \cos 2\alpha + 1)}}</math>
 
<math>\int_{1}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}=\int_{0}^{1} \frac{dv}{\sqrt{v (v^2 - 2v \cos 2\alpha + 1)}}</math>
77번째 줄: 69번째 줄:
 
<math>2K(\cos\alpha)=\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}</math>
 
<math>2K(\cos\alpha)=\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}</math>
  
<math>4K(\cos\alpha)</math>는 타원곡선 <math>y^2=x(x-e^{2i\alpha})(x-e^{-2i\alpha})=x(x^2 - 2x \cos 2\alpha + 1)}</math>의 주기임을 알 수 있다. ■
+
<math>4K(\cos\alpha)</math>는 타원곡선 <math>y^2=x(x-e^{2i\alpha})(x-e^{-2i\alpha})=x(x^2 - 2x \cos 2\alpha + 1)</math>의 주기임을 알 수 있다. ■
  
 
+
  
 
+
  
 
==역사==
 
==역사==
  
 
+
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
* [[수학사연표 (역사)|수학사연표]]
+
* [[수학사 연표]]
*  
 
  
 
+
  
 
+
  
 
==메모==
 
==메모==
  
 
+
  
 
+
  
 
==관련된 항목들==
 
==관련된 항목들==
 +
* [[르장드르의 타원곡선 모임]]
 +
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]
 +
* [[주기 (period)]]
  
* [[제1종타원적분 K (complete elliptic integral of the first kind)]]<br>
 
* [[periods]]<br>
 
 
 
 
 
 
 
 
==수학용어번역==
 
 
* 단어사전 http://www.google.com/dictionary?langpair=en|ko&q=
 
* 발음사전 http://www.forvo.com/search/
 
* [http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=&fstr= 대한수학회 수학 학술 용어집]<br>
 
** http://mathnet.kaist.ac.kr/mathnet/math_list.php?mode=list&ftype=eng_term&fstr=
 
* [http://www.nktech.net/science/term/term_l.jsp?l_mode=cate&s_code_cd=MA 남·북한수학용어비교]
 
* [http://kms.or.kr/home/kor/board/bulletin_list_subject.asp?bulletinid=%7BD6048897-56F9-43D7-8BB6-50B362D1243A%7D&boardname=%BC%F6%C7%D0%BF%EB%BE%EE%C5%E4%B7%D0%B9%E6&globalmenu=7&localmenu=4 대한수학회 수학용어한글화 게시판]
 
 
 
 
 
 
 
 
==사전 형태의 자료==
 
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://www.wolframalpha.com/input/?i=
 
* [http://dlmf.nist.gov/ NIST Digital Library of Mathematical Functions]
 
* [http://www.research.att.com/%7Enjas/sequences/index.html The On-Line Encyclopedia of Integer Sequences]<br>
 
** http://www.research.att.com/~njas/sequences/?q=
 
 
 
 
 
 
 
 
==관련논문==
 
 
* http://www.jstor.org/action/doBasicSearch?Query=
 
* http://www.ams.org/mathscinet
 
* http://dx.doi.org/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
==블로그==
 
 
*  구글 블로그 검색<br>
 
** http://blogsearch.google.com/blogsearch?q=
 
* [http://navercast.naver.com/science/list 네이버 오늘의과학]
 
  
* [http://betterexplained.com/ BetterExplained]
+
[[분류:리만곡면론]]

2020년 11월 12일 (목) 22:57 기준 최신판

개요


정의

  • 타원곡선 \(y^2=(x-e_1)(x-e_2)(x-e_3)\)의 주기는 두 복소수 \(\omega_1,\omega_2\)에 의해 생성되는 2차원 격자 \(\Lambda=\{m_1\omega_1+m_2\omega_2)|m_1,m_2\in\mathbb{Z}\}\)이다\[\omega_1=2\int_{e_1}^{\infty}\frac{dx}{\sqrt{(x-e_1)(x-e_2)(x-e_3)}}\]\[\omega_2=2\int_{e_2}^{e_1}\frac{dx}{\sqrt{(x-e_1)(x-e_2)(x-e_3)}}\]



  • 타원곡선 \(y^2=x^3-x\)의 경우 (타원곡선 y^2=x^3-x 에서 가져옴)\[e_1=1, e_2=0, e_3=-1\]로 두자\[\omega_1=2\int_{1}^{\infty}\frac{dx}{\sqrt{x^3-x}}=\frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{4})}{\Gamma(\frac{3}{4})}=5.24\cdots\]\[\omega_2=2i\int_0^1\frac{dx}{\sqrt{x-x^3}}=2i\int_{\infty}^1\frac{-dy}{\sqrt{y^3-y}}=i\omega_{1}\]




1종타원적분과의 관계



1종완전타원적분과 타원곡선의 주기1

\[\int_1^{\infty}\frac{dx}{\sqrt{x(x-1)(x-\lambda)}}=2K(k) = 2\int_0^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1-k^2 \sin^2\theta}}=2\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]

여기서 \(\lambda=k^2\).

  • 일반적으로

\[\int_{c}^{b}\frac{dt}{\sqrt{(a-t)(b-t)(t-c)}}=\frac{2}{\sqrt{a-c}}K(\sqrt{\frac{b-c}{a-c}})\]



1종완전타원적분과 타원곡선의 주기2

  • 다음이 성립한다

\[K(k)=\frac{1}{2}\int_{0}^{\infty} \frac{dx}{\sqrt{x (x^2 - (4k^2-2)x + 1)}}=\int_0^1\frac{1}{\sqrt{(1-x^2)(1-k^2x^2)}}\,dx\]

(증명)

\(k=\cos \alpha\) 로 두자.

\(K(\cos\alpha)=\int_{0}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \cos^2 \alpha \sin^2 \theta }}\)

\(=\int_{0}^{1} \frac{2dt}{\sqrt{t^4 - 2(2\cos^2 \alpha - 1)t^2 + 1}}\) (\(t =\tan (\theta/2) \)로 치환)

\(=\int_{1}^{\infty} \frac{2dx}{\sqrt{x^4 - 2x^2 \cos 2\alpha + 1}}\) (\(x=\frac{1}{t}\) 로 치환)

\(=\int_{1}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}\) (\(u=x^2\)로 치환)


한편, \(u=\frac{1}{v}\) 치환을 통하여

\(\int_{1}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}=\int_{0}^{1} \frac{dv}{\sqrt{v (v^2 - 2v \cos 2\alpha + 1)}}\)

임을 보일 수 있으므로,

\(2K(\cos\alpha)=\int_{0}^{\infty} \frac{du}{\sqrt{u (u^2 - 2u \cos 2\alpha + 1)}}\)

\(4K(\cos\alpha)\)는 타원곡선 \(y^2=x(x-e^{2i\alpha})(x-e^{-2i\alpha})=x(x^2 - 2x \cos 2\alpha + 1)\)의 주기임을 알 수 있다. ■



역사



메모

관련된 항목들