"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
  
 
* vector potential <math>\mathbf{A}(x,y,z,t)=(A_{x},A_{y},A_{z})</math>
 
* vector potential <math>\mathbf{A}(x,y,z,t)=(A_{x},A_{y},A_{z})</math>
* scalar potential <math>\phi(x,y,z,t)</math>
+
* electrostatic potential <math>\phi(x,y,z,t)</math> (scalar)
 
* electric field <math>\mathbf{E}</math>
 
* electric field <math>\mathbf{E}</math>
 
* magnetic field <math>\mathbf{B}</math>
 
* magnetic field <math>\mathbf{B}</math>
49번째 줄: 49번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">electromagnetic field (four vector potential)</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">electromagnetic field (four vector potential)</h5>
  
this is what we call the electromagnetic field<br><math>A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)=(\phi,A_{x},A_{y},A_{z})</math><br><math>\phi</math> is the scalar potential<br><math>A</math>  is the vector potential.<br>
+
defined as follows<br><math>A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)=(\phi,A_{x},A_{y},A_{z})</math><br><math>\phi</math> is the scalar potential<br><math>A</math>  is the vector potential.<br>
*   <br>
 
*  
 
 
* gague field describing the photon
 
* gague field describing the photon
* composed of a scalar electric potential and a three-vector magnetic potential
 
 
 
 
  
 
 
 
 
65번째 줄: 60번째 줄:
 
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
 
*  the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field<br>
 
*  the electromagnetism is a gauge field theory with structure group U(1)<br>
 
*  the electromagnetism is a gauge field theory with structure group U(1)<br>
 
+
*  For any scalar field <math>\Lambda(x,y,z,t)</math>,<br><math>\mathbf{A} \to \mathbf{A} +\del \Lambda</math><br><math>\phi\to \phi-\frac{1}{c}\frac{\partial\Lambda}{\partial t}</math><br>  <br>
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
124번째 줄: 114번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
*   <br>
 
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/Classical_electromagnetism
 
* http://en.wikipedia.org/wiki/Classical_electromagnetism
131번째 줄: 120번째 줄:
 
* http://en.wikipedia.org/wiki/electrical_current
 
* http://en.wikipedia.org/wiki/electrical_current
 
* http://en.wikipedia.org/wiki/Four-current
 
* http://en.wikipedia.org/wiki/Four-current
*   <br>
 
* http://www.zentralblatt-math.org/zmath/en/
 
* http://pythagoras0.springnote.com/
 
* [http://math.berkeley.edu/%7Ereb/papers/index.html http://math.berkeley.edu/~reb/papers/index.html]
 
* http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
 
* http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
 
* 다음백과사전 http://enc.daum.net/dic100/search.do?q=
 

2010년 5월 13일 (목) 20:22 판

Lorentz force
  • almost all forces in mechanics are conservative forces, those that are functions nly of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light
  • has two possibilites
    • what does this mean?

 

 

notations
  • vector potential \(\mathbf{A}(x,y,z,t)=(A_{x},A_{y},A_{z})\)
  • electrostatic potential \(\phi(x,y,z,t)\) (scalar)
  • electric field \(\mathbf{E}\)
  • magnetic field \(\mathbf{B}\)
  • \({\rho} \)
  • \(\mathbf{J}\)

 

 

Maxwell's equations
  • using vector calculus notation
    \(\nabla \cdot \mathbf{E} = \frac {\rho} {\varepsilon_0}\)
    \(\nabla \cdot \mathbf{B} = 0\)
    \(\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}} {\partial t}\)
    \(\nabla \times \mathbf{B} = \mu_0\mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}} {\partial t}\ \)

 

 

potentials
  • vector potential
    from \(\nabla \cdot \mathbf{B} = 0\), we can find a vector potential such that \(\mathbf{B}=\nabla \times \mathbf{A}\)
  • scalar potential
    \(E=-\frac{\partial\mathbf{A}}{\partial t} - \nabla \phi \)

 

 

electromagnetic field (four vector potential)
  • defined as follows
    \(A_{\alpha} = \left( - \phi/c, \mathbf{A} \right)=(\phi,A_{x},A_{y},A_{z})\)
    \(\phi\) is the scalar potential
    \(A\)  is the vector potential.
  • gague field describing the photon

 

 

gauge transformation
  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)
  • For any scalar field \(\Lambda(x,y,z,t)\),
    \(\mathbf{A} \to \mathbf{A} +\del \Lambda\)
    \(\phi\to \phi-\frac{1}{c}\frac{\partial\Lambda}{\partial t}\)
     

 

Covariant formulation
  • electromagnetic field strength
    \(F_{\alpha \beta} = \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha}\)
    \(F_{\alpha \beta} = \left( \begin{matrix} 0 & \frac{E_x}{c} & \frac{E_y}{c} & \frac{E_z}{c} \\ \frac{-E_x}{c} & 0 & -B_z & B_y \\ \frac{-E_y}{c} & B_z & 0 & -B_x \\ \frac{-E_z}{c} & -B_y & B_x & 0 \end{matrix} \right)\)

 

 

 

charge density and current density

 

 

 

four-current
  • charge density and current density

\[J^a = \left(c \rho, \mathbf{j} \right)\] where


c is the speed of light
ρ the charge density
j the conventional current density.
a labels the space-time dimensions

 

 

메모

 

 

encyclopedia