"Electromagnetics"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
28번째 줄: 28번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Lagrangian formulation==
+
==Lagrangian formulation==
  
 
*  Lagrangian for a charged particle in an electromagnetic field<br><math>L=T-V</math><br><math>L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}</math><br>
 
*  Lagrangian for a charged particle in an electromagnetic field<br><math>L=T-V</math><br><math>L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}</math><br>
43번째 줄: 43번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">Hamiltonian formulation==
+
==Hamiltonian formulation==
  
 
*  total energy of a charge particle in an electromagnetic field<br><math>E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi</math><br>
 
*  total energy of a charge particle in an electromagnetic field<br><math>E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi</math><br>
53번째 줄: 53번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">force on a particle==
+
==force on a particle==
  
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
 
* force on a particle is same as <math>e\mathbf{E}+e\mathbf{v}\times \mathbf{B}</math>
65번째 줄: 65번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">메모==
+
==메모==
  
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>
 
* [http://www.math.toronto.edu/%7Ecolliand/426_03/Papers03/C_Quigley.pdf http://www.math.toronto.edu/~colliand/426_03/Papers03/C_Quigley.pdf]<br>
83번째 줄: 83번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
97번째 줄: 97번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">books==
+
==books==
  
 
ELECTROMAGNETIC THEORY AND COMPUTATION
 
ELECTROMAGNETIC THEORY AND COMPUTATION

2012년 10월 28일 (일) 17:16 판

gauge invariance

  • the electromagnetic potential is a connection on a U(1)-bundle on spacetime whose curvature is the electromagnetic field
  • the electromagnetism is a gauge field theory with structure group U(1)

 

 

Lorentz force

  • almost all forces in mechanics are conservative forces, those that are functions only of positions, and certainly not functions of velocities
  • Lorentz force is a rare example of velocity dependent force

 

 

polarization of light

  • has two possibilites
    • what does this mean?

 

 

 

Lagrangian formulation

  • Lagrangian for a charged particle in an electromagnetic field
    \(L=T-V\)
    \(L(q,\dot{q})=m||\dot{q}||-e\phi+eA_{i}\dot{q}^{i}\)
  • action
    \(S=-\frac{1}{4}\int F^{\alpha\beta}F_{\alpha\beta}\,d^{4}x\)
  • Euler-Lagrange equations
    \(p_{i}=\frac{\partial{L}}{\partial{\dot{q}^{i}}}=m\frac{\dot{q}_{i}}{||\dot{q}_{i}||}+eA_{i}=mv_{i}+eA_{i}\)
    \(F_{i}=\frac{\partial{L}}{\partial{{q}^{i}}}=\frac{\partial}{\partial{{q}^{i}}}(eA_{j}\dot{q}^{j})=e\frac{\partial{A_{j}}}{\partial{q}^{i}}\dot{q}^{j}}}\)
  • equation of motion
    \(\dot{p}=F\) Therefore we get
    \(m\frac{dv_{i}}{dt}=eF_{ij}\dot{q}^{j}\). This is what we call the Lorentz force law.
  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

Hamiltonian formulation

  • total energy of a charge particle in an electromagnetic field
    \(E=\frac{1}{2m}(p_j-eA_{j})(p_j-eA_j)+q\phi\)
  • replace the momentum with the canonical momentum
    • similar to covariant derivative

 

 

force on a particle

  • force on a particle is same as \(e\mathbf{E}+e\mathbf{v}\times \mathbf{B}\)

 

 

 

 

메모

 

 

related items

 

 

encyclopedia

 

 

books

ELECTROMAGNETIC THEORY AND COMPUTATION