"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
11번째 줄: 11번째 줄:
 
==Belyi maps of degree 2==
 
==Belyi maps of degree 2==
  
* Belyi map f:\mathbb{P}^1\to \mathbb{P}^1 defined by z\mapsto z^2
+
* Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$
  
 
 
 
 
19번째 줄: 19번째 줄:
 
==Grobner techniques==
 
==Grobner techniques==
  
* start with three permutations (12), (23), (132). They generate S_3.
+
* start with three permutations $(12), (23), (132)$. They generate $S_3$.
* Riemann-Hurwitz formula gives the genus g=1-3+(1+1+2)/2=0
+
* Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$
  
 
 
 
 

2013년 12월 3일 (화) 05:13 판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$

 

 

Grobner techniques

  • start with three permutations $(12), (23), (132)$. They generate $S_3$.
  • Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 


 

history

 

 

related items

 

encyclopedia