"Belyi map"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
62번째 줄: 62번째 줄:
 
==articles==
 
==articles==
 
* Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
 
* Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
 +
* Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.
  
  

2014년 4월 28일 (월) 19:17 판

introduction

  • Belyi's theorem on algebraic curves
    • any non-singular algebraic curve C, defined by algebraic number coefficients, represents a compact Riemann surface which is a ramified covering of the Riemann sphere, ramified at three points $\{0,1,\infty\}$ only.
  • Belyi map gives rise to a projective curve

 

 

Belyi maps of degree 2

  • Belyi map $f:\mathbb{P}^1\to \mathbb{P}^1$ defined by $z\mapsto z^2$

 

 

Grobner techniques

  • start with three permutations $(12), (23), (132)$. They generate $S_3$.
  • Riemann-Hurwitz formula gives the genus $g=1-3+(1+1+2)/2=0$

 

 

complex analytic method

  • using modular forms

 

 

p-adic method

 


 

history

 

 

related items

 

expositions


articles

  • Klug, Michael, Michael Musty, Sam Schiavone, and John Voight. 2013. “Numerical Calculation of Three-Point Branched Covers of the Projective Line.” arXiv:1311.2081 [math] (November 8). http://arxiv.org/abs/1311.2081.
  • Köck, Bernhard. “Belyi’s Theorem Revisited.” arXiv:math/0108222, August 31, 2001. http://arxiv.org/abs/math/0108222.


encyclopedia