"Slater 92"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		Note==
type of identity==
Bailey pair 1==
Bailey pair 2==
Bailey pair ==
books==
 
		
	
imported>Pythagoras0  잔글 (찾아 바꾸기 – “</h5>” 문자열을 “==” 문자열로)  | 
				|||
| 1번째 줄: | 1번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px;">Note  | + | <h5 style="line-height: 2em; margin: 0px;">Note==  | 
| − | * [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]]<br>[[twisted Chebyshev polynomials and dilogarithm identities|]]<br>  | + | * [[twisted Chebyshev polynomials and dilogarithm identities|an explanation for dilogarithm ladder]]<br>[[twisted Chebyshev polynomials and dilogarithm identities|twisted Chebyshev polynomials and dilogarithm identities]]<br>  | 
*  Loxton & Lewin<br><math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.<br><math>3L(x^3)-9L(x^2)-9L(x)+7L(1)=0</math><br><math>3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0</math><br><math>3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0</math><br>  | *  Loxton & Lewin<br><math>x, -y, -z^{-1}</math>가 방정식 <math>x^3+3x^2-1=0</math>의 해라고 하자.<br><math>3L(x^3)-9L(x^2)-9L(x)+7L(1)=0</math><br><math>3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0</math><br><math>3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0</math><br>  | ||
| 8번째 줄: | 8번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">type of identity  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">type of identity==  | 
* [[Slater list|Slater's list]]  | * [[Slater list|Slater's list]]  | ||
| 17번째 줄: | 17번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair 1  | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair 1==  | 
*  Use the folloing<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br>  | *  Use the folloing<br><math>\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}</math>,  <math>\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}</math><br>  | ||
| 27번째 줄: | 27번째 줄: | ||
| − | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair 2  | + | <h5 style="line-height: 2em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair 2==  | 
*  Use the following <br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>  | *  Use the following <br><math>\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}</math><br>  | ||
| 37번째 줄: | 37번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair   | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bailey pair ==  | 
*  Bailey pairs<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><br><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><br><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><br><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math><br>  | *  Bailey pairs<br><math>\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}</math><br><math>\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}</math><br><math>\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)</math><br><math>\beta_n=\frac{1}{(q)_{n}(-q)_{n}}</math><br>  | ||
| 45번째 줄: | 45번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series identity  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">q-series identity==  | 
<math>\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}</math>  | <math>\sum_{n=0}^{\infty}\frac{(q^3;q^3)_{n}q^{n(n+1)}}{ (q)_{n}(q;q^{2})_n(q^2;q^2)_{n}}=\frac{(q^{9};q^{27})_{\infty}(q^{18};q^{27})_{\infty}(q^{27};q^{27})_{\infty}}{(q)_{\infty}}</math>  | ||
| 60번째 줄: | 60번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bethe type equation (cyclotomic equation)  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">Bethe type equation (cyclotomic equation)==  | 
Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{  | Let <math>\sum_{n=0}^{\infty}\frac{q^{n(an+b)/2}}{  | ||
| 85번째 줄: | 85번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">dilogarithm identity  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">dilogarithm identity==  | 
<math>L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)</math>  | <math>L(x^3)-3L(x^2)-3L(x)=-\frac{7}{3}L(1)</math>  | ||
| 93번째 줄: | 93번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">related items==  | 
| 101번째 줄: | 101번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">books==  | 
| 110번째 줄: | 110번째 줄: | ||
* http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=  | * http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=  | ||
| − | [[4909919|]]  | + | [[4909919|4909919]]  | 
| 116번째 줄: | 116번째 줄: | ||
| − | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles  | + | <h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==  | 
2012년 10월 28일 (일) 14:42 판
Note==
- an explanation for dilogarithm ladder
twisted Chebyshev polynomials and dilogarithm identities
 
- Loxton & Lewin
\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.
\(3L(x^3)-9L(x^2)-9L(x)+7L(1)=0\)
\(3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0\)
\(3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0\)
 
 
 
twisted Chebyshev polynomials and dilogarithm identities
\(x, -y, -z^{-1}\)가 방정식 \(x^3+3x^2-1=0\)의 해라고 하자.
\(3L(x^3)-9L(x^2)-9L(x)+7L(1)=0\)
\(3L(y^6)-6L(y^3)-27L(y^2)+18L(y)+2L(1)=0\)
\(3L(z^6)-6L(z^3)-27L(z^2)+18L(z)-2L(1)=0\)
type of identity==
- Slater's list
 
- B(3)
 
 
 
Bailey pair 1==
- Use the folloing
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\),  \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
 
- Specialize
\(x=q^2, y=-q, z\to\infty\).
 
- Bailey pair
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
 
 
 
\(\delta_n=\frac{(y)_n(z)_n x^n}{y^n z^n}\), \(\gamma_n=\frac{(x/y;q)_{\infty}(x/z;q)_{\infty}}{(x;q)_{\infty}(x/yz;q)_{\infty}}}\frac{(y)_n(z)_n x^n}{(x/y)_{n}(x/z)_{n}y^n z^n}\)
\(x=q^2, y=-q, z\to\infty\).
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
Bailey pair 2==
- Use the following 
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
 
- Specialize
\(a=q,c=-q,d=\infty\)
 
- Bailey pair
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
 
 
 
\(\sum_{r=0}^{n}\frac{(1-aq^{2r})(-1)^{r}q^{\frac{1}{2}(r^2+r)}(a)_{r}(c)_{r}(d)_{r}a^{r}}{(a)_{n+r+1}(q)_{n-r}(q)_{r}(aq/c)_{r}(aq/d)_{r}c^{r}d^{r}}=\frac{(aq/cd)_{n}}{(q)_{n}(aq/c)_{n}(aq/d)_{n}}\)
\(a=q,c=-q,d=\infty\)
\(\alpha_{0}=1\), \(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\sum_{r=0}^{n}\frac{\alpha_r}{(x)_{n-r}(q)_{n+r}}=\sum_{r=0}^{n}\frac{\alpha_r}{(q^{2})_{n-r}(q)_{n+r}}=\frac{1}{(q)_{n}(-q)_{n}}\)
Bailey pair ==
- Bailey pairs
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)
 
 
 
\(\delta_n=(-q)_{n}q^{\frac{n(n+1)}{2}}\)
\(\gamma_n=\frac{(-q)_{\infty}}{(q^2)_{\infty}}q^{\frac{n(n+1)}{2}}\)
\(\alpha_{n}=(-1)^{n}q^{n^2}(1-q^{2n+1})/(1-q)\)
\(\beta_n=\frac{1}{(q)_{n}(-q)_{n}}\)