"Deligne-Mostow theory"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
(section 'articles' updated)
imported>Pythagoras0
1번째 줄: 1번째 줄:
 +
==introduction==
 +
* Deligne and Mostow constructed a class of lattices in PU(2,1) using monodromy of hypergeometric functions. Later, Thurston reinterpreted them in terms of cone metrics on the sphere.
 +
 +
 
==expositions==
 
==expositions==
 
* Looijenga, Eduard. “Uniformization by Lauricella Functions--an Overview of the Theory of Deligne-Mostow.” arXiv:math/0507534, July 26, 2005. http://arxiv.org/abs/math/0507534.
 
* Looijenga, Eduard. “Uniformization by Lauricella Functions--an Overview of the Theory of Deligne-Mostow.” arXiv:math/0507534, July 26, 2005. http://arxiv.org/abs/math/0507534.

2016년 4월 12일 (화) 19:15 판

introduction

  • Deligne and Mostow constructed a class of lattices in PU(2,1) using monodromy of hypergeometric functions. Later, Thurston reinterpreted them in terms of cone metrics on the sphere.


expositions

  • Looijenga, Eduard. “Uniformization by Lauricella Functions--an Overview of the Theory of Deligne-Mostow.” arXiv:math/0507534, July 26, 2005. http://arxiv.org/abs/math/0507534.


articles

  • Irene Pasquinelli, Deligne-Mostow lattices with three fold symmetry and cone metrics on the sphere, arXiv:1509.05320 [math.GT], September 17 2015, http://arxiv.org/abs/1509.05320
  • Pasquinelli, Irene. “Deligne-Mostow Lattices with Three Fold Symmetry and Cone Metrics on the Sphere.” arXiv:1509.05320 [math], September 17, 2015. http://arxiv.org/abs/1509.05320.