"Deligne-Mostow theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 (section 'articles' updated) |
imported>Pythagoras0 |
||
1번째 줄: | 1번째 줄: | ||
+ | ==introduction== | ||
+ | * Deligne and Mostow constructed a class of lattices in PU(2,1) using monodromy of hypergeometric functions. Later, Thurston reinterpreted them in terms of cone metrics on the sphere. | ||
+ | |||
+ | |||
==expositions== | ==expositions== | ||
* Looijenga, Eduard. “Uniformization by Lauricella Functions--an Overview of the Theory of Deligne-Mostow.” arXiv:math/0507534, July 26, 2005. http://arxiv.org/abs/math/0507534. | * Looijenga, Eduard. “Uniformization by Lauricella Functions--an Overview of the Theory of Deligne-Mostow.” arXiv:math/0507534, July 26, 2005. http://arxiv.org/abs/math/0507534. |
2016년 4월 12일 (화) 19:15 판
introduction
- Deligne and Mostow constructed a class of lattices in PU(2,1) using monodromy of hypergeometric functions. Later, Thurston reinterpreted them in terms of cone metrics on the sphere.
expositions
- Looijenga, Eduard. “Uniformization by Lauricella Functions--an Overview of the Theory of Deligne-Mostow.” arXiv:math/0507534, July 26, 2005. http://arxiv.org/abs/math/0507534.
articles
- Irene Pasquinelli, Deligne-Mostow lattices with three fold symmetry and cone metrics on the sphere, arXiv:1509.05320 [math.GT], September 17 2015, http://arxiv.org/abs/1509.05320
- Pasquinelli, Irene. “Deligne-Mostow Lattices with Three Fold Symmetry and Cone Metrics on the Sphere.” arXiv:1509.05320 [math], September 17, 2015. http://arxiv.org/abs/1509.05320.