"Reciprocity law"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
19번째 줄: 19번째 줄:
  
 
* Sums of sqaures of integers 126p
 
* Sums of sqaures of integers 126p
*  equation<br> number of solutions of <math>x^4-2x^2+2=0</math> in F_p = <math>1+(\frac{-1}{p})+a_p</math> where<br><math>q\prod_{n=1}^{\infty} (1-q^{2n})(1-q^{16n})=\sum_{n=1}^\infty a_nq^n</math><br>  <br>
+
*  equation<br> number of solutions of <math>x^4-2x^2+2=0</math> in F_p = <math>1+(\frac{-1}{p})+a_p</math> where<br><math>q\prod_{n=1}^{\infty} (1-q^{2n})(1-q^{16n})=\sum_{n=1}^\infty a_nq^n</math><br>
 +
 
 +
#  Clear[g, p, M, a]<br> (*table of primes*)<br> Pr := Table[Prime[n], {n, 1, 20}]<br> (*equation*)<br> g[x_] := x^4 - 2 x^2 + 2<br> (*factorization of the discriminant & bad primes*)<br> FactorInteger[Discriminant[g[x], x]]<br> (* M[p] = number of solutions  for the equation g[x]=0 modulo p*)<br> M[n_] := 0<br> Do[For[i = 0, i < p, i++,<br>   M[p] = M[p] + If[Mod[PolynomialMod[g[i], p], p] == 0, 1, 0]], {p,<br>   Pr}]<br> (*modification of the number of solutions *)<br> a[p_] := 1 + JacobiSymbol[-1, p] + M[p]<br> (*modular form*)<br> f[q_] := Series[<br>   q*Product[(1 - q^(2 n))*(1 - q^(16 n)), {n, 1, 200}], {q, 0, 100}]<br> (*the coefficients of modular form f[q]*)<br> n[p_] := SeriesCoefficient[f[q], p]<br> (* output *)<br> title := {M_p, a_p, c_p};<br> TableForm[Table[{M[p], a[p], n[p]}, {p, Pr}] ,<br>  TableHeadings -> {Pr, title}]<br>
  
 
 
 
 
44번째 줄: 46번째 줄:
  
 
* [[mathematics of x^3-x+1=0]]<br>
 
* [[mathematics of x^3-x+1=0]]<br>
*  <br>
+
* [[4817997|Taniyama-Shimura]]<br>
  
 
 
 
 

2010년 5월 14일 (금) 05:01 판

introduction

 

 

 

example 1
  • Diamond & Shurman 155p
  • \(x^3=d\)

 

 

example 2
  • Sums of sqaures of integers 126p
  • equation
    number of solutions of \(x^4-2x^2+2=0\) in F_p = \(1+(\frac{-1}{p})+a_p\) where
    \(q\prod_{n=1}^{\infty} (1-q^{2n})(1-q^{16n})=\sum_{n=1}^\infty a_nq^n\)
  1. Clear[g, p, M, a]
    (*table of primes*)
    Pr := Table[Prime[n], {n, 1, 20}]
    (*equation*)
    g[x_] := x^4 - 2 x^2 + 2
    (*factorization of the discriminant & bad primes*)
    FactorInteger[Discriminant[g[x], x]]
    (* M[p] = number of solutions  for the equation g[x]=0 modulo p*)
    M[n_] := 0
    Do[For[i = 0, i < p, i++,
      M[p] = M[p] + If[Mod[PolynomialMod[g[i], p], p] == 0, 1, 0]], {p,
      Pr}]
    (*modification of the number of solutions *)
    a[p_] := 1 + JacobiSymbol[-1, p] + M[p]
    (*modular form*)
    f[q_] := Series[
      q*Product[(1 - q^(2 n))*(1 - q^(16 n)), {n, 1, 200}], {q, 0, 100}]
    (*the coefficients of modular form f[q]*)
    n[p_] := SeriesCoefficient[f[q], p]
    (* output *)
    title := {M_p, a_p, c_p};
    TableForm[Table[{M[p], a[p], n[p]}, {p, Pr}] ,
     TableHeadings -> {Pr, title}]

 

example 3
  • 1-2-3- of modular forms

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links