"Poincare Series of Coxeter Groups"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
9번째 줄: 9번째 줄:
 
$$
 
$$
 
where $d_i$'s are degrees   
 
where $d_i$'s are degrees   
http://mathoverflow.net/questions/28422/does-the-poincare-series-of-a-coxeter-group-always-describe-a-flag-variety?rq=1
+
* http://mathoverflow.net/questions/28422/does-the-poincare-series-of-a-coxeter-group-always-describe-a-flag-variety?rq=1
 +
* Poincare series of crystallographic Coxeter groups are always Betti numbers of Kac-Moody flag varieties, and that Kumar's book covers this very well
 +
 
 +
 
 
==example==
 
==example==
 
* $A_2$ example
 
* $A_2$ example

2014년 7월 1일 (화) 19:01 판

introduction

  • Poincaré Series of a Coxeter Group $W$ (Poincare series for ring of coinvariants)

$$ P_{W}(q)=\sum_{w\in W}q^{\ell(w)} $$

  • for finite $W$,

$$ P_{W}(q)=\prod_{\alpha>0}\frac{q^{\operatorname{ht}(\alpha)+1}-1}{q^{\operatorname{ht}(\alpha)}-1}=\prod_{i=1}^{k}\begin{bmatrix} d_i \end{bmatrix}_{q} $$ where $d_i$'s are degrees


example

  • $A_2$ example
  • degree : 2,3
  • $W$ has 6 elements : $1,s_1,s_2,s_1s_2,s_2s_1,s_1s_2s_1$
  • $P_{W}(q)=1 + 2 q + 2 q^2 + q^3=(1 + q) (1 + q + q^2)$
  • using heights of roots

$$ \prod_{\alpha>0}\frac{q^{\operatorname{ht}(\alpha)+1}-1}{q^{\operatorname{ht}(\alpha)}-1}=\frac{q^2-1}{q-1}\frac{q^2-1}{q-1}\frac{q^3-1}{q^2-1}=(1 + q) (1 + q + q^2) $$

  • using degrees

$$ \prod_{i=1}^{k}\begin{bmatrix} d_i \end{bmatrix}_{q}=\begin{bmatrix} 2 \end{bmatrix}_{q}\begin{bmatrix} 3 \end{bmatrix}_{q}=(1+q)(1+q+q^2) $$


related items


computational resource


books

  • Richard Kane
    • 144p, 219p, 236p


articles

  • Macdonald, I. G. 1972. “The Poincaré Series of a Coxeter Group.” Mathematische Annalen 199 (3) (September 1): 161–174.

doi:10.1007/BF01431421