"Heisenberg group and Heisenberg algebra"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
1번째 줄: | 1번째 줄: | ||
<h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | <h5 style="line-height: 3.428em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">introduction</h5> | ||
− | <math>[ | + | * start with a Lattice <math><\cdot,\cdot></math><br> |
+ | * make a vector space from it<br> | ||
+ | * <math>[\alpha(m),\beta(n)]=m\delta_{m,-n}<\alpha,\beta>c</math><br> | ||
+ | * add a derivation <math>d</math><br><math>d(\alpha(n))=n\alpha(n)</math><br><math>d(c)=0</math><br> | ||
+ | * define a Lie bracket<br><math>[d,x]=d(x)</math><br> | ||
− | + | ||
+ | |||
+ | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">fock space representation</h5> | ||
11번째 줄: | 17번째 줄: | ||
− | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;"> | + | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">Representation theory</h5> |
− | |||
− | |||
2009년 8월 13일 (목) 00:38 판
introduction
- start with a Lattice \(<\cdot,\cdot>\)
- make a vector space from it
- \([\alpha(m),\beta(n)]=m\delta_{m,-n}<\alpha,\beta>c\)
- add a derivation \(d\)
\(d(\alpha(n))=n\alpha(n)\)
\(d(c)=0\) - define a Lie bracket
\([d,x]=d(x)\)
fock space representation
Representation theory
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Heisenberg_algebra
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(첨부파일로 올릴것)
blogs
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
articles
- 논문정리
- The Cover of June/July 2003 Volume 50 Issue 6
- Notices of AMS
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
TeX