"Heisenberg group and Heisenberg algebra"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
3번째 줄: | 3번째 줄: | ||
* start with a Lattice <math><\cdot,\cdot></math><br> | * start with a Lattice <math><\cdot,\cdot></math><br> | ||
* make a vector space from it<br> | * make a vector space from it<br> | ||
− | * <math>[\alpha(m),\beta(n)]=m\delta_{m,-n}<\alpha,\beta>c</math><br> | + | * Construct a Loop algbera<br><math>A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c</math><br><math>\alpha(m)=\alpha\otimes t^m</math><br> |
+ | * Give a bracket <br><math>[\alpha(m),\beta(n)]=m\delta_{m,-n}<\alpha,\beta>c</math><br> | ||
* add a derivation <math>d</math><br><math>d(\alpha(n))=n\alpha(n)</math><br><math>d(c)=0</math><br> | * add a derivation <math>d</math><br><math>d(\alpha(n))=n\alpha(n)</math><br><math>d(c)=0</math><br> | ||
* define a Lie bracket<br><math>[d,x]=d(x)</math><br> | * define a Lie bracket<br><math>[d,x]=d(x)</math><br> | ||
+ | |||
+ | |||
+ | |||
+ | <h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px;">relation to quantum mechanics</h5> | ||
+ | |||
+ | * the position operators and momentum operators<br> | ||
2009년 8월 13일 (목) 00:43 판
introduction
- start with a Lattice \(<\cdot,\cdot>\)
- make a vector space from it
- Construct a Loop algbera
\(A\otimes\mathbb{C}[t,t^{-1}]\oplus\mathbb{C}c\)
\(\alpha(m)=\alpha\otimes t^m\) - Give a bracket
\([\alpha(m),\beta(n)]=m\delta_{m,-n}<\alpha,\beta>c\) - add a derivation \(d\)
\(d(\alpha(n))=n\alpha(n)\)
\(d(c)=0\) - define a Lie bracket
\([d,x]=d(x)\)
relation to quantum mechanics
- the position operators and momentum operators
fock space representation
Representation theory
books
- 찾아볼 수학책
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://gigapedia.info/1/
- http://www.amazon.com/s/ref=nb_ss_gw?url=search-alias%3Dstripbooks&field-keywords=
encyclopedia
- http://ko.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/Heisenberg_algebra
- http://en.wikipedia.org/wiki/
- http://en.wikipedia.org/wiki/
- Princeton companion to mathematics(첨부파일로 올릴것)
blogs
- 구글 블로그 검색 http://blogsearch.google.com/blogsearch?q=
- 트렌비 블로그 검색 http://www.trenb.com/search.qst?q=
articles
- 논문정리
- The Cover of June/July 2003 Volume 50 Issue 6
- Notices of AMS
- http://www.zentralblatt-math.org/zmath/en/
- http://pythagoras0.springnote.com/
- http://math.berkeley.edu/~reb/papers/index.html
- http://front.math.ucdavis.edu/search?a=&t=&c=&n=40&s=Listings&q=
- http://www.ams.org/mathscinet/search/publications.html?pg4=AUCN&s4=&co4=AND&pg5=TI&s5=&co5=AND&pg6=PC&s6=&co6=AND&pg7=ALLF&co7=AND&Submit=Search&dr=all&yrop=eq&arg3=&yearRangeFirst=&yearRangeSecond=&pg8=ET&s8=All&s7=
TeX