"주성분 분석"의 두 판 사이의 차이
		
		
		
		
		
		둘러보기로 가기
		검색하러 가기
		
				
		
		
	
imported>Pythagoras0  (→memo)  | 
				imported>Pythagoras0   | 
				||
| 13번째 줄: | 13번째 줄: | ||
==computational resource==  | ==computational resource==  | ||
* https://drive.google.com/file/d/0B8XXo8Tve1cxT0hBUmdPLUd1VHM/view  | * https://drive.google.com/file/d/0B8XXo8Tve1cxT0hBUmdPLUd1VHM/view  | ||
| + | * https://jakevdp.github.io/PythonDataScienceHandbook/05.09-principal-component-analysis.html  | ||
| + | |||
| + | |||
[[분류:계산]]  | [[분류:계산]]  | ||
2020년 2월 2일 (일) 13:56 판
introduction
- The principal components of matrix are linear transformations of the original columns into uncorrelated columns arranged in order of decreasing variance
 
memo
- https://math.stackexchange.com/questions/3869/what-is-the-intuitive-relationship-between-svd-and-pca
 - https://mathematica.stackexchange.com/questions/50987/principal-components-how-to-obtain-linear-transformations
 - https://stats.stackexchange.com/questions/2691/making-sense-of-principal-component-analysis-eigenvectors-eigenvalues