"T-duality"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5>” 문자열을 “==” 문자열로)
1번째 줄: 1번째 줄:
<h5>introduction</h5>
+
==introduction</h5>
  
 
* This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[http://en.wikipedia.org/wiki/T-duality ]
 
* This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[http://en.wikipedia.org/wiki/T-duality ]
18번째 줄: 18번째 줄:
 
 
 
 
  
<h5>history</h5>
+
==history</h5>
  
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
 
* http://www.google.com/search?hl=en&tbs=tl:1&q=
26번째 줄: 26번째 줄:
 
 
 
 
  
<h5>related items</h5>
+
==related items</h5>
  
 
* [[c=1 representations]]
 
* [[c=1 representations]]
44번째 줄: 44번째 줄:
 
 
 
 
  
<h5>books</h5>
+
==books</h5>
  
 
 
 
 
56번째 줄: 56번째 줄:
 
 
 
 
  
<h5>expositions</h5>
+
==expositions</h5>
  
 
 
 
 
78번째 줄: 78번째 줄:
 
 
 
 
  
<h5>question and answers(Math Overflow)</h5>
+
==question and answers(Math Overflow)</h5>
  
 
* http://mathoverflow.net/search?q=
 
* http://mathoverflow.net/search?q=
90번째 줄: 90번째 줄:
 
 
 
 
  
<h5>blogs</h5>
+
==blogs</h5>
  
 
*  구글 블로그 검색<br>
 
*  구글 블로그 검색<br>
101번째 줄: 101번째 줄:
 
 
 
 
  
<h5>experts on the field</h5>
+
==experts on the field</h5>
  
 
* http://arxiv.org/
 
* http://arxiv.org/
109번째 줄: 109번째 줄:
 
 
 
 
  
<h5>links</h5>
+
==links</h5>
  
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://detexify.kirelabs.org/classify.html Detexify2 - LaTeX symbol classifier]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]
 
* [http://pythagoras0.springnote.com/pages/1947378 수식표현 안내]

2012년 10월 28일 (일) 14:03 판

==introduction

  • This refers to the situation where one string theory compactified on a circle of radius R, and another string theory compactified on circle of radius 1/R describe the same physics. Therefore when one of the theories is on a very small circle the other theory is on a very large circle.[1]
  • \(\int \partial X \bar{\partial}X\)
  • \(X=X+2\pi R\)
  • T-duality
    \(\tilde{R}=\frac{\alpha'}{R}\)

 

 

http://iopscience.iop.org/1742-5468/2006/12/P12016/fulltext#SECTIONREF

http://www.sciencedirect.com/science/article/pii/0370269389910605

 

 

==history

 

 

==related items

 

encyclopedia

 

 

==books

 

 

 

==expositions

 

 

articles

 

 

 

==question and answers(Math Overflow)

 

 

 

==blogs

 

 

==experts on the field

 

 

==links