"Random matrix"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
잔글 (찾아 바꾸기 – “<h5 (.*)">” 문자열을 “==” 문자열로)
75번째 줄: 75번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia==
+
==encyclopedia==
  
 
* http://mathworld.wolfram.com/WignersSemicircleLaw.html
 
* http://mathworld.wolfram.com/WignersSemicircleLaw.html
112번째 줄: 112번째 줄:
 
 
 
 
  
<h5 style="line-height: 3.428em; margin: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles==
+
==articles==
  
 
* [http://dx.doi.org/10.1007/s002200050516%20 A Note on the Eigenvalue Density of Random Matrices]Michael K.-H. Kiessling and Herbert Spohn<br>
 
* [http://dx.doi.org/10.1007/s002200050516%20 A Note on the Eigenvalue Density of Random Matrices]Michael K.-H. Kiessling and Herbert Spohn<br>

2012년 10월 28일 (일) 17:45 판

introduction

  • The ensembles of random matrices obtained are called Gaussian Orthogonal (GOE), Unitary (GUE), and Symplectic (GSE) Ensembles for = 1, = 2, and = 4 respectively.
  • Catalan numbers and random matrices

 

 

random self-adjoint matrices

  • Wigner matrices
  • Band magtrices
  • Wishart matrix
  • Heavy tails matrices
  • Adjacency matrix of Erdos-Renyi graph

 

 

Gaussian Wigner matrices

 

 

Gaussian Unitary Ensemble(GUE) hypothesis

  • Wigner's work on neutron scattering resonances
  • Hugh Montgomety and Freeman Dyson
    • pair correlation function of zeroes of riemann zeta function
  • GUE is a big open problem but proven for random matrix models
  • GUE Tracy-Widom distribution
    • eigenvalue distributions of the classical Gaussian random matrices ensembles
    • distribution of their largest eigenvalue in the limit of large matrices
    • \(q''(s)=sq(s)+2q(s)^3\) Painleve II equation
      \(F_2(s)=\exp\left(-\int_{s}^{\infty}(x-s)q^2(x)dx\right)\)
      \(F_1(s)=\exp\left(-\frac{1}{2}\int_{s}^{\infty}q(x)dx\right)F_2(s)^{1/2}\)
      \(F_4(s/\sqrt{2})=\cosh\left(\frac{1}{2}\int_{s}^{\infty}q(x)dx\right)F_2(s)^{1/2}\)

 

 

 

determinantal processes

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

 

expositions

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links