"K-theory"의 두 판 사이의 차이
둘러보기로 가기
검색하러 가기
imported>Pythagoras0 |
imported>Pythagoras0 |
||
4번째 줄: | 4번째 줄: | ||
− | + | ==major results== | |
+ | * Norm residue isomorphism theorem | ||
+ | ** isomorphism from Milnor K-theory mod l to étale cohomology | ||
+ | ** Bloch–Kato conjecture | ||
+ | ** generalization of the Milnor conjecture | ||
+ | ** consequence : Quillen–Lichtenbaum conjecture | ||
34번째 줄: | 39번째 줄: | ||
* [[topology and vector bundles]] | * [[topology and vector bundles]] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==encyclopedia== | ==encyclopedia== | ||
− | + | * http://en.wikipedia.org/wiki/Algebraic_K-theory | |
* http://en.wikipedia.org/wiki/K-theory | * http://en.wikipedia.org/wiki/K-theory | ||
− | + | ==books== | |
+ | * Charles Weibel, [http://www.math.rutgers.edu/~weibel/Kbook.html The K-book: An introduction to algebraic K-theory] | ||
+ | * [http://books.google.co.kr/books?id=5AGmJFc6jncC Algebra, K-theory, groups, and education] | ||
− | |||
− | |||
+ | ==expositions== | ||
+ | * CHRISTOPHE SOULE, [http://www.ihes.fr/~soule/soulehangzhou.pdf HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS] | ||
+ | * [http://www.math.uni-bonn.de/people/grk1150/Past_Events/AG-programm-SS08.pdf Algebraic K-theory of number fields (after A. Borel)] | ||
* [http://www.jstor.org/stable/2318406 an introduction to algebraic K-theory]<br> | * [http://www.jstor.org/stable/2318406 an introduction to algebraic K-theory]<br> | ||
** T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364 | ** T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364 | ||
65번째 줄: | 64번째 줄: | ||
** Charles A. Weibel | ** Charles A. Weibel | ||
* [http://math.berkeley.edu/%7Ehutching/teach/215b-2004/courtney.pdf A brief glance at K-theory] | * [http://math.berkeley.edu/%7Ehutching/teach/215b-2004/courtney.pdf A brief glance at K-theory] | ||
− | * [http://www.spencerstirling.com/papers/ktheory.pdf ] | + | * [http://www.spencerstirling.com/papers/ktheory.pdf A BRIEF GUIDE TO ORDINARY K-THEORY] |
− | + | ||
+ | ==articles== | ||
74번째 줄: | 74번째 줄: | ||
==questions== | ==questions== | ||
+ | * http://mathoverflow.net/questions/364/motivation-for-algebraic-k-theory | ||
+ | |||
− | |||
[[분류:개인노트]] | [[분류:개인노트]] | ||
− | |||
[[분류:math and physics]] | [[분류:math and physics]] |
2013년 1월 11일 (금) 09:53 판
introduction
major results
- Norm residue isomorphism theorem
- isomorphism from Milnor K-theory mod l to étale cohomology
- Bloch–Kato conjecture
- generalization of the Milnor conjecture
- consequence : Quillen–Lichtenbaum conjecture
Borel
topics
encyclopedia
books
- Charles Weibel, The K-book: An introduction to algebraic K-theory
- Algebra, K-theory, groups, and education
expositions
- CHRISTOPHE SOULE, HIGHER K-THEORY OF ALGEBRAIC INTEGERS AND THE COHOMOLOGY OF ARITHMETIC GROUPS
- Algebraic K-theory of number fields (after A. Borel)
- an introduction to algebraic K-theory
- T. Y. Lam and M. K. Siu, The American Mathematical Monthly, Vol. 82, No. 4 (Apr., 1975), pp. 329-364
- K-THEORY. An elementary introduction
- Max Karoubi. Conference at the Clay Mathematics Research Academy
- The development of Algebraic K-theory before 1980
- Charles A. Weibel
- A brief glance at K-theory
- A BRIEF GUIDE TO ORDINARY K-THEORY
articles