"Ito calculus"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
5번째 줄: 5번째 줄:
 
* [http://www-stat.wharton.upenn.edu/%7Esteele/Publications/PDF/AoMtSC.pdf http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/AoMtSC.pdf]
 
* [http://www-stat.wharton.upenn.edu/%7Esteele/Publications/PDF/AoMtSC.pdf http://www-stat.wharton.upenn.edu/~steele/Publications/PDF/AoMtSC.pdf]
  
 
 
  
 
 
* http://mathematica.stackexchange.com/questions/30558/solving-a-stochastic-differential-equation?rq=1
 
* http://mathematica.stackexchange.com/questions/83645/martingale-pricing-simulation-random-walk-stock-price
 
  
 
+
==Ito SDE==
 
+
;def
 +
A stochastic process $X(t)$ is said to satisfy an Ito SDE, written as,
 +
$$
 +
dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito}
 +
$$
 +
if for $t\ge 0$ it satisfies the integral equation,
 +
$$
 +
X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau)
 +
$$
 +
===Kolmogorov equation===
 +
* let $p(x,t)$ be the p.d.f. of the stochastic process $X(t)$ satisfying \ref{ito}. Then
 +
$$
 +
\frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2}
 +
$$
  
 
==example==
 
==example==
24번째 줄: 33번째 줄:
 
* [[Brownian motion]]
 
* [[Brownian motion]]
  
 
+
 
 +
==computational resource==
 +
* http://mathematica.stackexchange.com/questions/30558/solving-a-stochastic-differential-equation?rq=1
 +
* http://mathematica.stackexchange.com/questions/83645/martingale-pricing-simulation-random-walk-stock-price
 +
 
 +
 
 +
 
 
[[분류:math and physics]]
 
[[분류:math and physics]]

2016년 5월 23일 (월) 01:50 판

introduction


Ito SDE

def

A stochastic process $X(t)$ is said to satisfy an Ito SDE, written as, $$ dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} $$ if for $t\ge 0$ it satisfies the integral equation, $$ X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) $$

Kolmogorov equation

  • let $p(x,t)$ be the p.d.f. of the stochastic process $X(t)$ satisfying \ref{ito}. Then

$$ \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} $$

example

  • Loewner equantion

 

related items


computational resource