"Ito calculus"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
imported>Pythagoras0
8번째 줄: 8번째 줄:
 
* Let $(\Omega, \mathcal{F}, P)$ be probability space
 
* Let $(\Omega, \mathcal{F}, P)$ be probability space
 
* A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable
 
* A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable
 +
* the induced probability measure $P_X : \mathbb{R}\to [0,1]$
 
* probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies
 
* probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies
 
$$
 
$$
 
P_{X}(X\in B)=\int_B f(x)\, dx
 
P_{X}(X\in B)=\int_B f(x)\, dx
 
$$
 
$$
 
 
  
 
==Ito SDE==
 
==Ito SDE==

2016년 5월 23일 (월) 02:02 판

introduction

basic probability theory

  • Let $(\Omega, \mathcal{F}, P)$ be probability space
  • A real-valued function $X : \Omega\to \mathbb{R}$ is called a random variable
  • the induced probability measure $P_X : \mathbb{R}\to [0,1]$
  • probability density function $f : \mathbb{R}\to [0,\infty)$ of $X$ satisfies

$$ P_{X}(X\in B)=\int_B f(x)\, dx $$

Ito SDE

def

A stochastic process $X(t)$ is said to satisfy an Ito SDE, written as, $$ dX(t)= \alpha(X(t),t)dt+\beta(X(t),t)dW(t)\label{ito} $$ if for $t\ge 0$ it satisfies the integral equation, $$ X(t)= X(0) +\int_{0}^{t}\alpha(X(\tau),\tau)\,d\tau+\int_{0}^{t}\beta(X(\tau),\tau)dW(\tau) $$

Kolmogorov equation

  • let $p(x,t)$ be the p.d.f. of the stochastic process $X(t)$ satisfying \ref{ito}. Then

$$ \frac{\partial p}{\partial t} = -\frac{\partial(\alpha(x,t)p)}{\partial x}+\frac{1}{2}\frac{\partial^2 (\beta^2(x,t)p)}{\partial x^2} $$

example

  • Loewner equantion

 

related items


computational resource