"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
9번째 줄: 9번째 줄:
 
*  noncommutative geometry<br>
 
*  noncommutative geometry<br>
 
* <math>uv=qvu</math><br>
 
* <math>uv=qvu</math><br>
*  this is called the Weyl algebra<br>
 
  
 
 
 
 
18번째 줄: 17번째 줄:
  
 
<math>\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
<math>\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 +
 +
<math>\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math>
 +
 +
 
 +
 +
<math>\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t </math>
  
 
 
 
 
  
 
<math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math>
 
<math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math>
 +
 +
 
 +
 +
 
  
 
 
 
 
75번째 줄: 84번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">encyclopedia</h5>
  
 +
* [http://pythagoras0.springnote.com/pages/5012319 q-적분]
 
* http://ko.wikipedia.org/wiki/
 
* http://ko.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/
 
* http://en.wikipedia.org/wiki/

2010년 5월 19일 (수) 06:38 판

introduction

 

 

quantum plane
  • noncommutative geometry
  • \(uv=qvu\)

 

 

quantum dilogarithm

\(\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

\(\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

 

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

 

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

 

 

 

정의
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

 

 

 

asymptotics

 

  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

where C= sum of Rogers dilogarithms

  •  

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links