"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
16번째 줄: 16번째 줄:
 
 
 
 
  
<h5 style="margin: 0px; line-height: 2em;">quantum dilogarithm</h5>
+
 
 
 
<math>\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
 
 
 
<math>\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math> 
 
  
 
 
 
 
  
<math>\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t </math>
+
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">q-integral (Jackson integral)</h5>
 
 
 
 
  
<math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math>
+
* <math>0<q<1</math>에 대하여 다음과 같이 정의<br><math>\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )</math><br><math>\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )</math><br>
 +
* <math>q\to 1</math> 이면, <math>\int_0^a f(x) d_q x \to  \int_0^a f(x) dx </math><br>
  
 
 
 
 
36번째 줄: 31번째 줄:
 
 
 
 
  
<h5 style="line-height: 2em; margin-top: 0px; margin-right: 0px; margin-bottom: 0px; margin-left: 0px; color: rgb(34, 61, 103); font-family: 'malgun gothic', dotum, gulim, sans-serif; font-size: 1.166em; background-image: ; background-color: initial; background-position: 0px 100%;">정의</h5>
+
<h5 style="margin: 0px; line-height: 2em;">quantum dilogarithm</h5>
  
* <math>0<q<1</math>에 대하여 다음과 같이 정의<br><math>\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )</math><br><math>\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )</math><br>
+
<math>\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n</math>
* <math>q\to 1</math> 이면, <math>\int_0^a f(x) d_q x \to  \int_0^a f(x) dx </math><br>
+
 
 +
<math>\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math> 
  
 
 
 
 
  
 
+
<math>\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t </math>
  
 
+
<math>\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt </math>
  
 
 
 
 
61번째 줄: 57번째 줄:
 
where C= sum of Rogers dilogarithms
 
where C= sum of Rogers dilogarithms
  
 <br>
+
 
 +
 
 +
 
 +
 
 +
<h5 style="margin: 0px; line-height: 2em;">quantum 5-term relation</h5>
 +
 
 +
In Weyl algebra, the following identity holds<br><math>(v)_{\infty}(u)_{\infty}=(u)_{\infty}(-vu)_{\infty}(v)_{\infty}</math><br>
 +
* [[1 manufacturing matrices from lower ranks|manufacturing matrices from lower ranks]]<br>
  
 
 
 
 
113번째 줄: 116번째 줄:
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
 
<h5 style="margin: 0px; line-height: 3.428em; color: rgb(34, 61, 103); font-family: 'malgun gothic',dotum,gulim,sans-serif; font-size: 1.166em; background-position: 0px 100%;">articles</h5>
  
 +
* Qu
 
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
 
* [http://dx.doi.org/10.1023/A:1007364912784 The hyperbolic volume of knots from quantum dilogarithm]<br>
 
** R. M. Kashaev, 1996
 
** R. M. Kashaev, 1996

2010년 5월 19일 (수) 07:03 판

introduction

 

 

quantum plane
  • also called the Weyl algebra
  • noncommutative geometry
  • \(uv=qvu\)

 

 

 

 

q-integral (Jackson integral)
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

 

quantum dilogarithm

\(\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

\(\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\) 

 

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

 

 

asymptotics

 

  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

where C= sum of Rogers dilogarithms

 

 

quantum 5-term relation

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links