"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
20번째 줄: 20번째 줄:
 
* <math>0<q<1</math>에 대하여 다음과 같이 정의<br><math>\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )</math><br><math>\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )</math><br>
 
* <math>0<q<1</math>에 대하여 다음과 같이 정의<br><math>\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )</math><br><math>\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )</math><br>
 
* <math>q\to 1</math> 이면, <math>\int_0^a f(x) d_q x \to  \int_0^a f(x) dx </math><br>
 
* <math>q\to 1</math> 이면, <math>\int_0^a f(x) d_q x \to  \int_0^a f(x) dx </math><br>
 
 
 
  
 
 
 
 
32번째 줄: 30번째 줄:
  
 
<math>\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math>
 
<math>\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})</math>
 
 
 
  
 
<math>\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t </math>
 
<math>\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t </math>
59번째 줄: 55번째 줄:
 
*  In Weyl algebra, the following identity holds<br><math>(v)_{\infty}(u)_{\infty}=(u)_{\infty}(-vu)_{\infty}(v)_{\infty}</math><br>
 
*  In Weyl algebra, the following identity holds<br><math>(v)_{\infty}(u)_{\infty}=(u)_{\infty}(-vu)_{\infty}(v)_{\infty}</math><br>
 
* [[1 manufacturing matrices from lower ranks|manufacturing matrices from lower ranks]]<br>
 
* [[1 manufacturing matrices from lower ranks|manufacturing matrices from lower ranks]]<br>
 +
 +
 
 +
 +
 
 +
 +
 
 +
 +
<h5 style="MARGIN: 0px; LINE-HEIGHT: 2em;"> </h5>
  
 
 
 
 
118번째 줄: 122번째 줄:
 
* [http://dx.doi.org/10.1088/0305-4470/28/8/014 Remarks on the quantum dilogarithm]<br>
 
* [http://dx.doi.org/10.1088/0305-4470/28/8/014 Remarks on the quantum dilogarithm]<br>
 
** V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217
 
** V V Bazhanov and N Yu Reshetikhin, 1995 J. Phys. A: Math. Gen. 28 2217
 +
* [http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]<br>
 +
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
  
 
 
 
*  A link invariant from quantum dilogarithm<br>
 
* Kashaev, R. M., Modern Phys. Lett. A 10 (1995),
 
* 1409–1418
 
 
* [http://dx.doi.org/10.1142/S0217732394003610 Quantum Dilogarithm as a 6j-Symbol]<br>
 
* [http://dx.doi.org/10.1142/S0217732394003610 Quantum Dilogarithm as a 6j-Symbol]<br>
 
**  R. M. Kashaev, MPLA [http://www.worldscinet.com/mpla/mkt/archive.shtml?1994&9 Volume: 9, ][http://www.worldscinet.com/mpla/09/0940/S02177323940940.html Issue: 40](1994) pp. 3757-3768<br>
 
**  R. M. Kashaev, MPLA [http://www.worldscinet.com/mpla/mkt/archive.shtml?1994&9 Volume: 9, ][http://www.worldscinet.com/mpla/09/0940/S02177323940940.html Issue: 40](1994) pp. 3757-3768<br>

2010년 7월 30일 (금) 22:12 판

introduction

 

 

quantum plane
  • also called the Weyl algebra
  • noncommutative geometry
  • \(uv=qvu\)

 

 

q-integral (Jackson integral)
  • \(0<q<1\)에 대하여 다음과 같이 정의
    \(\int_0^a f(x) d_q x = a(1-q)\sum_{k=0}^{\infty}q^k f(aq^k )\)
    \(\int_0^{\infty} f(x) d_q x =(1-q)\sum_{k=-\infty}^{\infty}q^k f(aq^k )\)
  • \(q\to 1\) 이면, \(\int_0^a f(x) d_q x \to \int_0^a f(x) dx \)

 

 

quantum dilogarithm

\(\Psi(z)=\prod_{n=0}^{\infty}(1-zq^n)=\sum_{n\geq 0}\frac{(-1)^nq^{n(n-1)/2}}{(1-q)(1-q^2)\cdots(1-q^n)} z^n\)

\(\Psi(z)=\exp(\frac{\operatorname{Li}_{2,q}(z)}{q-1})\)

\(\operatorname{Li}_{2,q}(z) = -\int_0^z{{\ln (1-t)}\over t} d_{q}t \)

\(\operatorname{Li}_2(z) = -\int_0^z{{\ln (1-t)}\over t} dt \)

 

 

asymptotics 
  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

where C= sum of Rogers dilogarithms

 

 

quantum 5-term relation

 

 

 

 

 

 

history

 

 

related items

 

 

encyclopedia

 

 

books

 

[[4909919|]]

 

 

articles

 

 

question and answers(Math Overflow)

 

 

blogs

 

 

experts on the field

 

 

links