"Quantum dilogarithm"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
8번째 줄: 8번째 줄:
  
 
<h5 style="margin: 0px; line-height: 2em;">근사 공식</h5>
 
<h5 style="margin: 0px; line-height: 2em;">근사 공식</h5>
 
 
 
  
 
* <math>q=e^{-t}</math> and as the t goes 0 (i.e. as q goes to 1)<br>
 
* <math>q=e^{-t}</math> and as the t goes 0 (i.e. as q goes to 1)<br>
34번째 줄: 32번째 줄:
 
*  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.<br>
 
*  this invariant is in fact a quantum generalization of the hyperbolic volume invariant.<br>
 
*  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.<br>
 
*  It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.<br>
 +
 +
* '''[Kashaev1995]'''[http://dx.doi.org/10.1142/S0217732395001526 A link invariant from quantum dilogarithm]<br>
 +
** Kashaev, R. M., Modern Phys. Lett. A 10 (1995), 1409–1418
  
 
 
 
 

2011년 8월 19일 (금) 00:35 판

introduction[1]

 

 

근사 공식
  • \(q=e^{-t}\) and as the t goes 0 (i.e. as q goes to 1)

 

\(\sum_{n=0}^{\infty}\frac{q^{\frac{A}{2}n^2+cn}}{(q)_n}\sim\exp(\frac{C}{t})\)

 

여기서 C는 로저스 다이로그 함수 (Roger's dilogarithm) 의 어떤 값에서의 합

 

 

 

Knot and invariants from quantum dilogarithm
  • [Kashaev1995] 
  • a link invariant, depending on a positive integer parameter N, has been defined via three-dimensional interpretation of the cyclic quantum dilogarithm
  • The construction can be considered as an example of the simplicial (combinatorial) version of the three-dimensional TQFT
  • this invariant is in fact a quantum generalization of the hyperbolic volume invariant.
  • It is possible that the simplicialTQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2 + 1-dimensional gravity.

 

 

related items