"3rd order mock theta functions"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
imported>Pythagoras0
16번째 줄: 16번째 줄:
  
 
==asymptotic behavior at roots of unity==
 
==asymptotic behavior at roots of unity==
* the series converges for $|q|<1$ and the roots of unity $q$ at odd order
+
* the series converges for <math>|q|<1</math> and the roots of unity <math>q</math> at odd order
* For even order roots of unity, $f(q)$ has exponential singularities but there is a nice result to describe this behavior
+
* For even order roots of unity, <math>f(q)</math> has exponential singularities but there is a nice result to describe this behavior
* let us define $$b(q)=(1-q)(1-q^3)(1-q^5)\cdots (1-2q+2q^4-\cdots)$$, or we can write it as $$b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)$$
+
* let us define :<math>b(q)=(1-q)(1-q^3)(1-q^5)\cdots (1-2q+2q^4-\cdots)</math>, or we can write it as :<math>b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)</math>
* let $\zeta$ be even $2k$ order root of unity
+
* let <math>\zeta</math> be even <math>2k</math> order root of unity
$$
+
:<math>
 
\lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1}
 
\lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1}
$$
+
</math>
* if $k=2$, as $q\to i$, $f(q)-b(q)\to 4i$
+
* if <math>k=2</math>, as <math>q\to i</math>, <math>f(q)-b(q)\to 4i</math>
 
 
 
 
  
 
==harmonic weak Maass form==
 
==harmonic weak Maass form==
* We have a weight k=1/2, harmonic weak Maass form $h_3$ under <math>\Gamma(2)</math> defined by :<math>h_3(\tau)=q^{-1/24}f(q)+R_3(q)</math> where
+
* We have a weight k=1/2, harmonic weak Maass form <math>h_3</math> under <math>\Gamma(2)</math> defined by :<math>h_3(\tau)=q^{-1/24}f(q)+R_3(q)</math> where
 
:<math>R_3(\tau)=\sum_{n\equiv 1\pmod 6}\operatorname{sgn}(n)\beta(n^2y/6)q^{-n^2/24}</math> where 
 
:<math>R_3(\tau)=\sum_{n\equiv 1\pmod 6}\operatorname{sgn}(n)\beta(n^2y/6)q^{-n^2/24}</math> where 
 
:<math>\displaystyle \beta(t) = \int_t^\infty u^{-1/2} e^{-\pi u} \,du=2\int_{\sqrt{x}}^{\infty} e^{-\pi t^2}\,dt</math>
 
:<math>\displaystyle \beta(t) = \int_t^\infty u^{-1/2} e^{-\pi u} \,du=2\int_{\sqrt{x}}^{\infty} e^{-\pi t^2}\,dt</math>
 
* Note that this can be rewritten as :<math>R_3(\tau)=(i/2)^{k-1} \int_{-\overline\tau}^{i\infty} (z+\tau)^{-k}\overline{g(-\overline z)}\,dz</math>
 
* Note that this can be rewritten as :<math>R_3(\tau)=(i/2)^{k-1} \int_{-\overline\tau}^{i\infty} (z+\tau)^{-k}\overline{g(-\overline z)}\,dz</math>
where $g$ is the shadow
+
where <math>g</math> is the shadow
 
:<math>g_3(z)=\sum_{n\equiv 1\pmod 6}nq^{n^2/24}</math>
 
:<math>g_3(z)=\sum_{n\equiv 1\pmod 6}nq^{n^2/24}</math>
  
76번째 줄: 76번째 줄:
 
==articles==
 
==articles==
 
* Min-Joo Jang, Byungchan Kim, On spt-crank type functions, http://arxiv.org/abs/1603.05608v1
 
* Min-Joo Jang, Byungchan Kim, On spt-crank type functions, http://arxiv.org/abs/1603.05608v1
* George E. Andrews, Atul Dixit, Daniel Schultz, Ae Ja Yee, Overpartitions related to the mock theta function $ω(q)$, http://arxiv.org/abs/1603.04352v1
+
* George E. Andrews, Atul Dixit, Daniel Schultz, Ae Ja Yee, Overpartitions related to the mock theta function <math>ω(q)</math>, http://arxiv.org/abs/1603.04352v1
 
* Watson, G. N. [http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 The Final Problem : An Account of the Mock Theta Functions](1936),  J. London Math. Soc. 11: 55–80
 
* Watson, G. N. [http://dx.doi.org/10.1112%2Fjlms%2Fs1-11.1.55 The Final Problem : An Account of the Mock Theta Functions](1936),  J. London Math. Soc. 11: 55–80
 
* Dragonette, Leila A. [http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan](1952), Transactions of the American Mathematical Society 72: 474–500
 
* Dragonette, Leila A. [http://dx.doi.org/10.2307%2F1990714 Some asymptotic formulae for the mock theta series of Ramanujan](1952), Transactions of the American Mathematical Society 72: 474–500

2020년 11월 13일 (금) 00:36 판

introduction

  • Ramanujan's 3rd order mock theta function is defined by

\[f(q) = \sum_{n\ge 0} {q^{n^2}\over (-q;q)_n^2} =1+\sum_{n\ge 1} \frac{q^{n^2}}{(1+q)^2(1+q^2)^2\cdots{(1+q^{n})^2}}={2\over \prod_{n>0}(1-q^n)}\sum_{n\in Z}{(-1)^nq^{3n^2/2+n/2}\over 1+q^n}\]

 

  • the asymptotic series for coefficients of the order 3 mock theta function f(q) studied by of (Andrews 1966) and Dragonette (1952) converges to the coefficients (Bringmann & Ono 2006).
  • In particular Mock theta functions have asymptotic expansions at cusps of the modular group, acting on the upper half-plane, that resemble those of modular forms of weight 1/2 with poles at the cusps.


asymptotics at 1


asymptotic behavior at roots of unity

  • the series converges for \(|q|<1\) and the roots of unity \(q\) at odd order
  • For even order roots of unity, \(f(q)\) has exponential singularities but there is a nice result to describe this behavior
  • let us define \[b(q)=(1-q)(1-q^3)(1-q^5)\cdots (1-2q+2q^4-\cdots)\], or we can write it as \[b(q)=q^{1/24}\frac{\eta(\tau)}{\eta(2\tau)}\theta(-q)\]
  • let \(\zeta\) be even \(2k\) order root of unity

\[ \lim_{q\to \zeta} f(q)-(-1)^k b(q)=-4\sum_{n=0}^{k-1} (1+\zeta)^2(1+\zeta^2)^2\cdots (1+\zeta^n)^2\zeta^{n+1} \]

  • if \(k=2\), as \(q\to i\), \(f(q)-b(q)\to 4i\)

 

harmonic weak Maass form

  • We have a weight k=1/2, harmonic weak Maass form \(h_3\) under \(\Gamma(2)\) defined by \[h_3(\tau)=q^{-1/24}f(q)+R_3(q)\] where

\[R_3(\tau)=\sum_{n\equiv 1\pmod 6}\operatorname{sgn}(n)\beta(n^2y/6)q^{-n^2/24}\] where  \[\displaystyle \beta(t) = \int_t^\infty u^{-1/2} e^{-\pi u} \,du=2\int_{\sqrt{x}}^{\infty} e^{-\pi t^2}\,dt\]

  • Note that this can be rewritten as \[R_3(\tau)=(i/2)^{k-1} \int_{-\overline\tau}^{i\infty} (z+\tau)^{-k}\overline{g(-\overline z)}\,dz\]

where \(g\) is the shadow \[g_3(z)=\sum_{n\equiv 1\pmod 6}nq^{n^2/24}\]


shadow

  • shadow = weight 3/2 theta function
  • \(\Theta(24z)=q-5q^{25}+7q^{49}-11q^{121}+13q^{169}-\cdots\)
  • \(M_f(z)=q^{-1}f(q^{24})+\frac{i}{\sqrt{3}}\int_{}^{}\frac{\Theta(24z)}{}dz\)

 

 

 

history

 

 

related items


 

computational resources

 


expositions



articles