"홀-리틀우드(Hall-Littlewood) 대칭함수"의 두 판 사이의 차이

수학노트
둘러보기로 가기 검색하러 가기
 
(같은 사용자의 중간 판 5개는 보이지 않습니다)
1번째 줄: 1번째 줄:
 
==개요==
 
==개요==
* 양의 정수 $n$에 대하여, $x=(x_1,\dots,x_n)$로 두자
+
* 양의 정수 <math>n</math>에 대하여, <math>x=(x_1,\dots,x_n)</math>로 두자
* 분할 $\lambda=(\lambda_n, \cdots, \lambda_1),\, \lambda_n\geq \cdots\geq \lambda_1\geq 0$에 대하여, $x^{\lambda}$는 단항식 $x_1^{\lambda_1}\dots x_n^{\lambda_n}$를 나타냄
+
* 분할 <math>\lambda=(\lambda_n, \cdots, \lambda_1),\, \lambda_n\geq \cdots\geq \lambda_1\geq 0</math>에 대하여, <math>x^{\lambda}</math>는 단항식 <math>x_1^{\lambda_1}\dots x_n^{\lambda_n}</math>를 나타냄
* $m_i(\lambda)$ $\lambda$에서 $i$의 개수
+
* <math>m_i(\lambda)</math> <math>\lambda</math>에서 <math>i</math>의 개수
* 다음과 같이 $v_{\lambda}$를 정의
+
* 다음과 같이 <math>v_{\lambda}</math>를 정의
$$
+
:<math>
 
v_{\lambda}(t)=\prod_{i=0}^n \frac{(t)_{m_i}}{(1-t)^{m_i}}
 
v_{\lambda}(t)=\prod_{i=0}^n \frac{(t)_{m_i}}{(1-t)^{m_i}}
$$
+
</math>
* 홀-리틀우드 다항식 $P_{\lambda}(x;t)$은 다음과 같이 정의
+
* 홀-리틀우드 다항식 <math>P_{\lambda}(x;t)</math>은 다음과 같이 정의
$$
+
:<math>
 
P_{\lambda}(x;t)=\frac{1}{v_{\lambda}(t)}
 
P_{\lambda}(x;t)=\frac{1}{v_{\lambda}(t)}
 
\sum_{w\in\mathfrak{S}_n}  
 
\sum_{w\in\mathfrak{S}_n}  
 
w\bigg(x^{\lambda}\prod_{i<j}\frac{x_i-tx_j}{x_i-x_j}\bigg),
 
w\bigg(x^{\lambda}\prod_{i<j}\frac{x_i-tx_j}{x_i-x_j}\bigg),
$$
+
</math>
여기서 대칭군 $\mathfrak{S}_n$$x$$x_i$의 치환으로 작용
+
여기서 대칭군 <math>\mathfrak{S}_n</math><math>x</math><math>x_i</math>의 치환으로 작용
* $P_{\lambda}(x;t)$는 차수가 $\lvert\lambda \lvert$인 동차대칭다항식이다
+
* <math>P_{\lambda}(x;t)</math>는 차수가 <math>\lvert\lambda \lvert</math>인 동차대칭다항식이다
 
* 특수화
 
* 특수화
** $t=0$일 때, [[슈르 다항식(Schur polynomial)]] $s_{\lambda}$을 얻는다
+
** <math>t=0</math>일 때, [[슈르 다항식(Schur polynomial)]] <math>s_{\lambda}</math>을 얻는다
** $t=1$일 때, [[단항 대칭 다항식 (monomial symmetric polynomial)]] $m_{\lambda}$을 얻는다
+
** <math>t=1</math>일 때, [[단항 대칭 다항식 (monomial symmetric polynomial)]] <math>m_{\lambda}</math>을 얻는다
  
 
==테이블==
 
==테이블==
* 슈르다항식 $s_{\lambda}$, 단항 대칭 다항식 $m_{\lambda}$, 홀-리틀우드 다항식 $P_{\lambda}$
+
* 슈르다항식 <math>s_{\lambda}</math>, 단항 대칭 다항식 <math>m_{\lambda}</math>, 홀-리틀우드 다항식 <math>P_{\lambda}</math>
===$n=2,d=3$===
+
===<math>n=2,d=3</math>===
$$
+
:<math>
 
\begin{array}{c|c|c}
 
\begin{array}{c|c|c}
 
  \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\
 
  \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\
30번째 줄: 30번째 줄:
 
  \{1,1,1\} & 0 & 0 & 0
 
  \{1,1,1\} & 0 & 0 & 0
 
\end{array}
 
\end{array}
$$
+
</math>
  
===$n=2,d=4$===
+
===<math>n=2,d=4</math>===
$$
+
:<math>
 
\begin{array}{c|c|c}
 
\begin{array}{c|c|c}
 
  \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\
 
  \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\
 
\hline
 
\hline
  \{4\} & x_1^4+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1+x_2^4 & x_1^4+x_2^4 & -t x_2 x_1^3-t x_2^2 x_1^2-t x_2^3 x_1+x_1^4+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1+x_2^4 \\
+
  \{4\} & x_1^4+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1+x_2^4 & x_1^4+x_2^4 & x_1^4+(1-t) x_1 x_2^3+(1-t) x_1^2 x_2^2+(1-t) x_1^3 x_2+x_2^4 \\
  \{3,1\} & x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1 & x_1 x_2 \left(x_1^2+x_2^2\right) & -t x_2^2 x_1^2+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1 \\
+
  \{3,1\} & x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1 & x_1^3 x_2+x_1 x_2^3 & x_1^3 x_2+(1-t) x_1^2 x_2^2+x_1 x_2^3 \\
 
  \{2,2\} & x_1^2 x_2^2 & x_1^2 x_2^2 & x_1^2 x_2^2 \\
 
  \{2,2\} & x_1^2 x_2^2 & x_1^2 x_2^2 & x_1^2 x_2^2 \\
 
  \{2,1,1\} & 0 & 0 & 0 \\
 
  \{2,1,1\} & 0 & 0 & 0 \\
 
  \{1,1,1,1\} & 0 & 0 & 0
 
  \{1,1,1,1\} & 0 & 0 & 0
 
\end{array}
 
\end{array}
$$
+
</math>
  
 
==메모==
 
==메모==
63번째 줄: 63번째 줄:
  
 
==관련논문==
 
==관련논문==
 +
* Boris Feigin, Igor Makhlin, A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem, arXiv:1505.04269 [math.CO], May 16 2015, http://arxiv.org/abs/1505.04269
 +
* Piotr Pragacz, A Gysin formula for Hall-Littlewood polynomials, arXiv:1403.0788[math.AG], March 04 2014, http://arxiv.org/abs/1403.0788v8, Proc. Amer. Math. Soc. 143 (2015) no.11, 4705-4711
 +
* François Bergeron, A q-Analog of Foulke's conjecture, http://arxiv.org/abs/1602.08134v2
 +
* Duval, Antoine, and Vincent Pasquier. “Pieri Rules, Vertex Operators and Baxter Q-Matrix.” arXiv:1510.08709 [math-Ph, Physics:nlin], October 29, 2015. http://arxiv.org/abs/1510.08709.
 
* Wheeler, Michael, and Paul Zinn-Justin. “Refined Cauchy/Littlewood Identities and Six-Vertex Model Partition Functions: III. Deformed Bosons.” arXiv:1508.02236 [math-Ph], August 10, 2015. http://arxiv.org/abs/1508.02236.
 
* Wheeler, Michael, and Paul Zinn-Justin. “Refined Cauchy/Littlewood Identities and Six-Vertex Model Partition Functions: III. Deformed Bosons.” arXiv:1508.02236 [math-Ph], August 10, 2015. http://arxiv.org/abs/1508.02236.
 
* Feigin, Boris, and Igor Makhlin. “A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem.” arXiv:1505.04269 [math], May 16, 2015. http://arxiv.org/abs/1505.04269.
 
* Feigin, Boris, and Igor Makhlin. “A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem.” arXiv:1505.04269 [math], May 16, 2015. http://arxiv.org/abs/1505.04269.
73번째 줄: 77번째 줄:
 
* Lenart, Cristian. “Hall-Littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams.” Discrete Mathematics 311, no. 4 (2011): 258–75. doi:10.1016/j.disc.2010.11.010.
 
* Lenart, Cristian. “Hall-Littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams.” Discrete Mathematics 311, no. 4 (2011): 258–75. doi:10.1016/j.disc.2010.11.010.
 
* Warnaar, S. Ole. 2007. “Rogers-Szego Polynomials and Hall-Littlewood Symmetric Functions.” arXiv:0708.3110 [math], August. http://arxiv.org/abs/0708.3110.
 
* Warnaar, S. Ole. 2007. “Rogers-Szego Polynomials and Hall-Littlewood Symmetric Functions.” arXiv:0708.3110 [math], August. http://arxiv.org/abs/0708.3110.
* Warnaar, S. Ole. “Hall-Littlewood Functions and the $A_2$ Rogers-Ramanujan Identities.” Advances in Mathematics 200, no. 2 (2006): 403–34. doi:10.1016/j.aim.2004.12.001.
+
* Warnaar, S. Ole. “Hall-Littlewood Functions and the <math>A_2</math> Rogers-Ramanujan Identities.” Advances in Mathematics 200, no. 2 (2006): 403–34. doi:10.1016/j.aim.2004.12.001.
 
* Jouhet, Frédéric, and Jiang Zeng. “New Identities for Hall-Littlewood Polynomials and Applications.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 10, no. 1 (2005): 89–112. doi:10.1007/s11139-005-3508-3.
 
* Jouhet, Frédéric, and Jiang Zeng. “New Identities for Hall-Littlewood Polynomials and Applications.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 10, no. 1 (2005): 89–112. doi:10.1007/s11139-005-3508-3.
* Andrews, George E., Anne Schilling, and S. Ole Warnaar. “An $A_2$ Bailey Lemma and Rogers-Ramanujan-Type Identities.” Journal of the American Mathematical Society 12, no. 3 (1999): 677–702. doi:10.1090/S0894-0347-99-00297-0.
+
* Andrews, George E., Anne Schilling, and S. Ole Warnaar. “An <math>A_2</math> Bailey Lemma and Rogers-Ramanujan-Type Identities.” Journal of the American Mathematical Society 12, no. 3 (1999): 677–702. doi:10.1090/S0894-0347-99-00297-0.
 
* Kirillov, Anatol N. ‘New Combinatorial Formula for Modified Hall-Littlewood Polynomials’. arXiv:math/9803006, 2 March 1998. http://arxiv.org/abs/math/9803006.
 
* Kirillov, Anatol N. ‘New Combinatorial Formula for Modified Hall-Littlewood Polynomials’. arXiv:math/9803006, 2 March 1998. http://arxiv.org/abs/math/9803006.
 
* Jing, Naihuan. ‘Vertex Operators and Hall-Littlewood Symmetric Functions’. Advances in Mathematics 87, no. 2 (June 1991): 226–48. doi:10.1016/0001-8708(91)90072-F.
 
* Jing, Naihuan. ‘Vertex Operators and Hall-Littlewood Symmetric Functions’. Advances in Mathematics 87, no. 2 (June 1991): 226–48. doi:10.1016/0001-8708(91)90072-F.
 
* Stembridge, John R. “Hall-Littlewood Functions, Plane Partitions, and the Rogers-Ramanujan Identities.” Transactions of the American Mathematical Society 319, no. 2 (1990): 469–98. doi:10.2307/2001250.
 
* Stembridge, John R. “Hall-Littlewood Functions, Plane Partitions, and the Rogers-Ramanujan Identities.” Transactions of the American Mathematical Society 319, no. 2 (1990): 469–98. doi:10.2307/2001250.
 
[[분류:대칭다항식]]
 
[[분류:대칭다항식]]

2020년 11월 12일 (목) 23:41 기준 최신판

개요

  • 양의 정수 \(n\)에 대하여, \(x=(x_1,\dots,x_n)\)로 두자
  • 분할 \(\lambda=(\lambda_n, \cdots, \lambda_1),\, \lambda_n\geq \cdots\geq \lambda_1\geq 0\)에 대하여, \(x^{\lambda}\)는 단항식 \(x_1^{\lambda_1}\dots x_n^{\lambda_n}\)를 나타냄
  • \(m_i(\lambda)\) 는 \(\lambda\)에서 \(i\)의 개수
  • 다음과 같이 \(v_{\lambda}\)를 정의

\[ v_{\lambda}(t)=\prod_{i=0}^n \frac{(t)_{m_i}}{(1-t)^{m_i}} \]

  • 홀-리틀우드 다항식 \(P_{\lambda}(x;t)\)은 다음과 같이 정의

\[ P_{\lambda}(x;t)=\frac{1}{v_{\lambda}(t)} \sum_{w\in\mathfrak{S}_n} w\bigg(x^{\lambda}\prod_{i<j}\frac{x_i-tx_j}{x_i-x_j}\bigg), \] 여기서 대칭군 \(\mathfrak{S}_n\)는 \(x\)에 \(x_i\)의 치환으로 작용

테이블

  • 슈르다항식 \(s_{\lambda}\), 단항 대칭 다항식 \(m_{\lambda}\), 홀-리틀우드 다항식 \(P_{\lambda}\)

\(n=2,d=3\)

\[ \begin{array}{c|c|c} \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\ \hline \{3\} & x_1^3+x_2 x_1^2+x_2^2 x_1+x_2^3 & x_1^3+x_2^3 & x_1^3+(1-t) x_1^2 x_2+(1-t) x_1 x_2^2 +x_2^3 \\ \{2,1\} & x_2 x_1^2+x_2^2 x_1 & x_1 x_2 \left(x_1+x_2\right) & x_2 x_1^2+x_2^2 x_1 \\ \{1,1,1\} & 0 & 0 & 0 \end{array} \]

\(n=2,d=4\)

\[ \begin{array}{c|c|c} \lambda & s_{\lambda }(x) & m_{\lambda }(x) & P_{\lambda }(x;t) \\ \hline \{4\} & x_1^4+x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1+x_2^4 & x_1^4+x_2^4 & x_1^4+(1-t) x_1 x_2^3+(1-t) x_1^2 x_2^2+(1-t) x_1^3 x_2+x_2^4 \\ \{3,1\} & x_2 x_1^3+x_2^2 x_1^2+x_2^3 x_1 & x_1^3 x_2+x_1 x_2^3 & x_1^3 x_2+(1-t) x_1^2 x_2^2+x_1 x_2^3 \\ \{2,2\} & x_1^2 x_2^2 & x_1^2 x_2^2 & x_1^2 x_2^2 \\ \{2,1,1\} & 0 & 0 & 0 \\ \{1,1,1,1\} & 0 & 0 & 0 \end{array} \]

메모

  • spherical Macdonald functions


관련된 항목들


매스매티카 파일 및 계산 리소스


리뷰, 에세이, 강의노트


관련논문

  • Boris Feigin, Igor Makhlin, A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem, arXiv:1505.04269 [math.CO], May 16 2015, http://arxiv.org/abs/1505.04269
  • Piotr Pragacz, A Gysin formula for Hall-Littlewood polynomials, arXiv:1403.0788[math.AG], March 04 2014, http://arxiv.org/abs/1403.0788v8, Proc. Amer. Math. Soc. 143 (2015) no.11, 4705-4711
  • François Bergeron, A q-Analog of Foulke's conjecture, http://arxiv.org/abs/1602.08134v2
  • Duval, Antoine, and Vincent Pasquier. “Pieri Rules, Vertex Operators and Baxter Q-Matrix.” arXiv:1510.08709 [math-Ph, Physics:nlin], October 29, 2015. http://arxiv.org/abs/1510.08709.
  • Wheeler, Michael, and Paul Zinn-Justin. “Refined Cauchy/Littlewood Identities and Six-Vertex Model Partition Functions: III. Deformed Bosons.” arXiv:1508.02236 [math-Ph], August 10, 2015. http://arxiv.org/abs/1508.02236.
  • Feigin, Boris, and Igor Makhlin. “A Combinatorial Formula for Affine Hall-Littlewood Functions via a Weighted Brion Theorem.” arXiv:1505.04269 [math], May 16, 2015. http://arxiv.org/abs/1505.04269.
  • Cori, Robert, Pasquale Petrullo, and Domenico Senato. “Hall-Littlewood Symmetric Functions via Yamanouchi Toppling Game.” arXiv:1412.0444 [math], December 1, 2014. http://arxiv.org/abs/1412.0444.
  • Borodin, Alexei. “On a Family of Symmetric Rational Functions.” arXiv:1410.0976 [math], October 3, 2014. http://arxiv.org/abs/1410.0976.
  • Venkateswaran, Vidya. 2014. “A P-Adic Interpretation of Some Integral Identities for Hall-Littlewood Polynomials.” arXiv:1407.3755 [math], July. http://arxiv.org/abs/1407.3755.
  • Frechette, Claire, and Madeline Locus. 2014. “Combinatorial Properties of Rogers-Ramanujan-Type Identities Arising from Hall-Littlewood Polynomials.” arXiv:1407.2880 [math], July. http://arxiv.org/abs/1407.2880.
  • Griffin, Michael J., Ken Ono, and S. Ole Warnaar. 2014. “A Framework of Rogers-Ramanujan Identities and Their Arithmetic Properties.” arXiv:1401.7718 [math], January. http://arxiv.org/abs/1401.7718.
  • Bartlett, Nick, and S. Ole Warnaar. “Hall-Littlewood Polynomials and Characters of Affine Lie Algebras.” arXiv:1304.1602 [math], April 4, 2013. http://arxiv.org/abs/1304.1602.
  • Lenart, Cristian. “Hall-Littlewood Polynomials, Alcove Walks, and Fillings of Young Diagrams.” Discrete Mathematics 311, no. 4 (2011): 258–75. doi:10.1016/j.disc.2010.11.010.
  • Warnaar, S. Ole. 2007. “Rogers-Szego Polynomials and Hall-Littlewood Symmetric Functions.” arXiv:0708.3110 [math], August. http://arxiv.org/abs/0708.3110.
  • Warnaar, S. Ole. “Hall-Littlewood Functions and the \(A_2\) Rogers-Ramanujan Identities.” Advances in Mathematics 200, no. 2 (2006): 403–34. doi:10.1016/j.aim.2004.12.001.
  • Jouhet, Frédéric, and Jiang Zeng. “New Identities for Hall-Littlewood Polynomials and Applications.” The Ramanujan Journal. An International Journal Devoted to the Areas of Mathematics Influenced by Ramanujan 10, no. 1 (2005): 89–112. doi:10.1007/s11139-005-3508-3.
  • Andrews, George E., Anne Schilling, and S. Ole Warnaar. “An \(A_2\) Bailey Lemma and Rogers-Ramanujan-Type Identities.” Journal of the American Mathematical Society 12, no. 3 (1999): 677–702. doi:10.1090/S0894-0347-99-00297-0.
  • Kirillov, Anatol N. ‘New Combinatorial Formula for Modified Hall-Littlewood Polynomials’. arXiv:math/9803006, 2 March 1998. http://arxiv.org/abs/math/9803006.
  • Jing, Naihuan. ‘Vertex Operators and Hall-Littlewood Symmetric Functions’. Advances in Mathematics 87, no. 2 (June 1991): 226–48. doi:10.1016/0001-8708(91)90072-F.
  • Stembridge, John R. “Hall-Littlewood Functions, Plane Partitions, and the Rogers-Ramanujan Identities.” Transactions of the American Mathematical Society 319, no. 2 (1990): 469–98. doi:10.2307/2001250.